Theoretical investigation of mechanical, thermodynamic, electronic and transport properties of Ni2P

Authors

  • Y. Bendakmousse Université de Batna 1
  • N. Baadji Université Mohamed Boudiaf
  • K. Zanat Université 8 Mai 1945

DOI:

https://doi.org/10.31349/RevMexFis.71.040501

Keywords:

Nickel phosphide; electronic transport; DFT; NEGF

Abstract

The all-electron full-potential linearized augmented plane-wave method is used to investigate the structural, electronic, and thermodynamic properties of the hexagonal structure of Ni2P. We show that Ni2P is stable and has interesting mechanical and thermodynamical properties. While we used the non-equilibrium Green’s function formalism to investigate electronic transport properties, particularly conductance by constructing a symmetric junction with Ni2P acting as the spacer between two gold electrodes (Au/Ni2P/Au). We considered both phosphorus-rich and phosphorus-poor terminated interface and we show that the transmission coefficients depends on the nature of Ni2P/Au interface. Furthermore, we mimic experimental junction, by analyzing the impact of phosphorus deficiency. We show that Ni2P’s conductance is altered differently depending on whether the defect is located at the interface or deep within the spacer.

References

P. J. Megía, A. J. Vizcaíno, J. A. Calles, and A. Carrero, Energy & Fuels 35, 16403 (2021), https://doi.org/10.1021/acs.energyfuels.1c02501

S. Wang, A. Lu, and C.-J. Zhong, Nano Convergence 8 (2021) 4. 3. J. Theerthagiri et al., Ceramics International 47, 4404 (2021), ISSN 0272-8842

C. Hu, C. Lv, S. Liu, Y. Shi, J. Song, Z. Zhang, J. Cai, and A. Watanabe, Catalysts 10 (2020), ISSN 2073-4344, https://www.mdpi.com/2073-4344/10/2/188

H. Sun, X. Xu, Z. Yan, X. Chen, F. Cheng, P. S. Weiss, and J. Chen, Chemistry of Materials 29, 8539 (2017)

Y. Li, J. Zhang, D. Li, J. Ding, Y. Liu, and Q. Cai, ChemElectroChem 6, 5492 (2019)

F. Fu, Q. He, X. Zhang, J. Key, P. Shen, and J. Zhu, Batteries 9 (2023), ISSN 2313-0105, https://www.mdpi.com/2313-0105/9/5/267

K. Lee and P. Nash, Phase diagrams of binary nickel alloys. Materials Park, OH: ASM International pp. 235-246 (1991)

S. Orishchin, V. Babizhetskiı, and Y. B. Kuz’ma, Crystallography Reports 45 (2000)

S. Rundqvist, Acta Chemica Scandinavica 4, 992 (1962)

Q. Wei, X. Liu, Y. Zhou, Z. Xu, P. Zhang, and D. Liu, Catalysis Today 353, 39 (2020), ISSN 0920-5861, international Symposium on Advances in Hydroprocessing of Oil Fractions (ISAHOF 2019)

X.-K. Wei et al., Advanced materials 32, 2003479 (2020)

M.-Q. Wang, C. Tang, C. Ye, J. Duan, C. Li, Y. Chen, S.-J. Bao, and M. Xu, Journal of Materials Chemistry A 6, 14734 (2018)

M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B 26, 4571 (1982), https://link.aps.org/doi/10.1103/PhysRevB.26.4571

E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981), https://link.aps.org/doi/10.1103/PhysRevB.24.864

S. Blügel and G. Bihlmayer (John von Neumann Institute for Computing, 2006), vol. 31 of Computational Nanoscience: Do It Yourself!, pp. 85-129, ISBN 3-00-017350- 1, URL https://juser.fz-juelich.de/record/50026/files/FZJ-2014-02213.pdf

J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996), URL https://link.aps.org/doi/10.1103/PhysRevLett.77.3865

H. J. Monkhorst and J. D. Pack, Physical review B 13, 5188 (1976)

P. E. Blochl, O. Jepsen, and O. K. Andersen, Phys. Rev. B 49, ¨ 16223 (1994), URL https://link.aps.org/doi/10.1103/PhysRevB.49.16223

S. Datta, Index (Cambridge University Press, 1995), p. 375- 377, Cambridge Studies in Semiconductor Physics and Microelectronic Engineering

A. R. Rocha, V. M. García-Suárez, S. W. Bailey, C. J. Lambert, J. Ferrer, and S. Sanvito, Nature Materials 4, 335 (2005), ISSN 1476-4660, https://doi.org/10.1038/nmat1349

I. Rungger and S. Sanvito, Phys. Rev. B 78 (2008) 035407, https://link.aps.org/doi/10.1103/PhysRevB.78.035407

J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejon, and D. Sánchez- Portal, Journal of Physics: Condensed Matter 14 (2002) 2745, https://dx.doi.org/10.1088/0953-8984/14/11/302

N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991), https://link.aps.org/doi/10.1103/PhysRevB.43.1993

G. E. Ayom, M. D. Khan, S. C. Masikane, F. M. de Souza, W. Lin, R. K. Gupta, and N. Revaprasadu, Sustainable Energy & Fuels 6, 1319 (2022)

U. Guharoy, T. Ramirez Reina, E. Olsson, S. Gu, and Q. Cai, ACS Catalysis 9, 3487 (2019)

F. Birch, Phys. Rev. 71, 809 (1947), https://link.aps.org/doi/10.1103/PhysRev.71.809

F. D. Murnaghan, Proceedings of the National Academy of Sciences 30, 244 (1944), https://www.pnas.org/doi/pdf/10.1073/pnas.30.9.244, https://www.pnas.org/doi/abs/10.1073/pnas.30.9.244

S. Rundqvist, Acta Chemica Scandinavica 4, 992 (1962)

D. Zhao, L. Zhou, Y. Du, A.Wang, Y. Peng, Y. Kong, C. Sha, Y. Ouyang, and W. Zhang, Calphad 35, 284 (2011)

J. F. Nye, Physical properties of crystals: their representation by tensors and matrices (Oxford university press, 1985)

F. Jona and P. M. Marcus, Phys. Rev. B 66, 094104 (2002), https://link.aps.org/doi/10.1103/PhysRevB.66.094104

L. Fast, J. M. Wills, B. Johansson, and O. Eriksson, Phys. Rev. B 51, 17431 (1995), https://link.aps.org/doi/10.1103/PhysRevB.51.17431

F. Mouhat and F. m. c.-X. Coudert, Phys. Rev. B 90, 224104 (2014), https://link.aps.org/doi/10.1103/PhysRevB.90.224104

Z.-j. Wu, E.-j. Zhao, H.-p. Xiang, X.-f. Hao, X.-j. Liu, and J. Meng, Phys. Rev. B 76, 054115 (2007), https://link.aps.org/doi/10.1103/PhysRevB.76.054115

Z.-j. Wu, E.-j. Zhao, H.-p. Xiang, X.-f. Hao, X.-j. Liu, and J. Meng, Phys. Rev. B 76, 054115 (2007), https://link.aps.org/doi/10.1103/PhysRevB.76.054115

I. Frantsevich, F. Voronov, and S. Bakuta, Kiev, Izdatel’stvo Naukova Dumka, 1982 (1982) 288

O. L. Anderson, Journal of Physics and Chemistry of Solids 24 (1963) 909, ISSN 0022-3697

H. Huntington, Solid state physics, Ed. F. Seltz and D. Turnball, vol. 7, chap. iii (1958)

G. A. ALERS, in Lattice Dynamics, edited by W. P. MASON (Academic Press, 1965), vol. 3 of Physical Acoustics, pp. 1-42

J. W. Jaeken and S. Cottenier, Computer Physics Communications 207, 445 (2016)

Y. Tian and P. Wu, Journal of Materials Research 32, 1 (2017)

G. Grimvall, Thermophysical properties of materials (Elsevier, 1999)

N. W. Ashcroft and N. D. Mermin, Solid State Physics (HoltSaunders, 1976)

J. M. Ziman, Principles of the Theory of Solids (Cambridge university press, 1972)

R. Landauer, IBM Journal of Research and Development 1, 223 (1957)

M. Büttiker, Phys. Rev. Lett. 65, 2901 (1990), https://link.aps.org/doi/10.1103/PhysRevLett.65.2901

Downloads

Published

2025-07-01

How to Cite

[1]
Y. BENDAKMOUSSE, N. Baadji, and K. Zanat, “Theoretical investigation of mechanical, thermodynamic, electronic and transport properties of Ni2P”, Rev. Mex. Fís., vol. 71, no. 4 Jul-Aug, pp. 040501 1–, Jul. 2025.