Electromagnetic field induced resonance tunneling in a quantum point contact

Authors

  • G. González de la Cruz Cinvestav-IPN

DOI:

https://doi.org/10.31349/RevMexFis.71.010503

Keywords:

Laser-field; electron tunneling; transmission probability

Abstract

Recently experimental results described electron transport through a quantum point contact irradiated by an electromagnetic wave in the tunneling regime as a photon-stimulated tunneling. In this work, we study electron tunneling through potential barrier in the presence of an intense electromagnetic field. Using the time-dependent unitary transformation method, the electron scattering by the laser-dressed potential barrier is calculated analytically. It is shown that the potential barrier is modified in the presence of the electromagnetic radiation and electron transmission probability is enhanced with increasing the laser-field strength.

References

Morina, S., Kibis, O. V., Pervishko, A. A. and Shelykh, I. A. Transport properties of a two-dimensional electron gas dressed by light. Phys. Rev. B 91, 155312 (2015). doi: 10.1103/PhysRevB.91.155312

Popruzhenko, S.V. Keldysh Theory of Strong Field Ionization: History, Applications, Difficulties and Perspectives. Journal of Physics B: Atomic, Molecular and Optical Physics 2014, 47, 204001. doi:10.1088/0953-4075/47/20/204001

. Gloria Platero, Ramon Aguado, Photon-assisted transport in semiconductor nanostructures, Phys. Rep. (2004) 395, 1, doi: 10.1016/j.physrep.2004.01.004

. K. Kristinsson, O.V. Kibis, S. Morina and I.A. Shelykh, Control of electronic transport in graphene by electromagnetic dressing, Sci. Rep. (2015) 6, 20082, doi: 10.1038/srep20082

. Tomoki Ozawa, Alberto Amo, Jacqueline Bloch, and Iacopo Carusotto, Klein tunneling in driven-dissipative photonic graphene, Phys. Rev. A (2017) 96, 013813, doi: 10.1103/PhysRevA.96.013813.

. M. A. Mojarro, V. G. Ibarra-Sierra, J. C. Sandoval-Santana, R. Carrillo-Bastos, and Gerardo G. Naumis, Phys. Rev. B (2020) 102, 165301, doi: 10.1103/PhysRevB.102.165301

. M. Buttiker and R. Landauer, Phys. Rev. Lett. (1982), 49, 1739

. Shenghan Zhou, Ke Chen, Matthew Thomas Cole, Zhenjun Li, Mo Li, Jun Chen, Christoph Lienau, Chi Li, and Qing Dai, Ultrafast Electron Tunneling Devices—From Electric-Field Driven to Optical-Field Driven, Adv. Materials, (2021) 2101449, 1, doi: 10.1002/adma.202101449

. V. A. Tkachenkoa, Z. D. Kvona, O. A. Tkachenkoa, A. S. Yaroshevicha, E. E. Rodyakinaa, D. G. Baksheev, and A. V. Latysheva, Photon-Stimulated Transport in a Quantum Point Contact (Brief Review), JETP Letters, (2021),113, 331, doi: 10.1134/S0021364021050106.

. I. L. Mayer, L.C.M. Miranda and R.M.O. Galvao, Electron transmission through a potential barrier in the presence of an electromagnetic field: unitary transformation method Can. J. Phys. (1985) 63,1083

. M. V. Boev, V. M. Kovalev and O. V. Kibis, Optically induced resonant tunneling of electrons in nanostructures, Sci. Rep. (2023), 13, 19625

. R.M. Galvao and L.C.M. Miranda, Quantum theory of an electron in external fields using unitary transformations, Am. J. Phys. (1983) 51, 729, doi: 10.1119/1.13156

. J.H. Mun, H. Sakai and D.E.Kim, Time-dependent unitary transformation method in the strong-field-ionization regime with the Kramers-Henneberger picture, Int J Mol Sci. (2021) 22(16),8514. doi: 10.3390/ijms22168514.

. C. A. S. Lima and L. C. M. Miranda, Atoms in superintense laser fields, Phys. Rev. A, (1981) 23, 3335

. O. A. Tkachenkoa, V. A. Tkachenkoa, D. G. Baksheevb , and Z. D. Kvona, Steps of the Giant Terahertz Photoconductance of a Tunneling Point Contact ,JETP. Lett. (2018) 108, 396

. L. D. Landau and E.M. Lifshitz, Quantum Mechanics (Non-relativistic theory), Pergamon Press (1965)

Downloads

Published

2025-01-01

How to Cite

[1]
G. González de la Cruz, “ Electromagnetic field induced resonance tunneling in a quantum point contact”, Rev. Mex. Fís., vol. 71, no. 1 Jan-Feb, pp. 010503 1–, Jan. 2025.