Investigating the effects of phase-space non-commutativity coordinates on the modified Deng-Fan Yukawa potential model and thermodynamic properties in 3D(NR-NCPS) and 3D(NR-QM) symmetries

Authors

  • Abdelmadjid Maireche University of M'sila- Algeria

DOI:

https://doi.org/10.31349/RevMexFis.71.020401

Keywords:

Deng-Fan Yukawa potential, Phase-space deformation, Generalised Bopp's shift method, Schrödinger equation.

Abstract

An approximate new bound state solution of the three-dimensional deformed Schrodinger equation under the deformed phase-space sym- ¨ metries for the modified Deng-Fan Yukawa potential model that is obtained from the combination of the corresponding expression in threedimensional non-relativistic quantum mechanics symmetries and some central terms [exp (−αr)/r (1 − exp (−αr)), exp (−2αr)/r (1 − exp (−αr))2 , exp (−3αr)/r (1 − exp (−αr))3 , exp (−αr)/r 2 , exp (−αr)/r 3 and 1/r 4 ] coupled with the infinitesimal non-commutativity vector Θ and the angular momentum operator L. With the help of the parametric generalized Bopp’s shifts method, the independent time perturbation theory method, and an approximation scheme, the analytical energies of the studied were obtained for both symmetries, for different quantum numbers. The new non-relativistic energy equation under the studied potential for the homogenous diatomic molecules (HODMs) (H2, I2); the heterogeneous diatomic molecules (CO, HCl, LiH); the neutral transition metal hydrides (ScH, TiH, VH, CrH); the transition-metal lithide (CuLi); the transition-metal carbides (TiC, NiC); the transition metal nitrite (ScN) and the transition metal fluoride (ScF) and in the presence of deformation phase-space are dependent on the discrete atomic quantum numbers (j, l, s and m), the dissociation energy, the equilibrium bond length, and the screening parameter (re, De, and α), the deformation phase parameters (P nc p and S nc p ). The new resulting energy equation is utilized to calculate spin-averaged mass spectra of the heavy mesons under the studied potential and Deng-Fan Yukawa potential model in three-dimensional non-relativistic quantum mechanics and 3it’s extended symmetries. Furthermore, we have calculated the partition function, from which thermodynamic properties such as mean energy, specific heat capacity, entropy, and free energy are derived in both three-dimensional non-relativistic quantum mechanics and the deformed phase-space symmetries symmetries. Notably, the two special cases, representing the modified Yukawa potential and the modified Deng-Fan potential were treated in extended phase-space symmetry for energies and thermodynamic properties. Our current study promises to apply to different areas of physics in various domains, including atomic and molecular physics.

Author Biography

Abdelmadjid Maireche, University of M'sila- Algeria

BP 239 CHEBILIA MSILA 28000 ALGERIA

References

Z. H. Deng and Y. P. Fan, A potential function of diatomic molecules, Shandong Univ. J 7 (1957) 162 .

D. Saha, B. Khirali, B. Swain and J. Bhoi, Jost states for the Deng-Fan potential, Phys. Scri. 98(1) (2022) 015303, https://doi.org/10.1088/1402-4896/aca1e6

K. J.Oyewumi, O. J. Oluwadare, K. D. Sen, et al., Bound state solutions of the Deng-Fan molecular potential with the Pekeris-type approximation using the Nikiforov-Uvarov (N-U) method, J Math Chem 51 (2013) 976, https://doi.org/10.1007/s10910-012-0123-6

A. N.Ikot, U. S. Okorie, G. J.Rampho et al., Bound and Scattering State Solutions of the Klein-Gordon Equation with Deng-Fan Potential in Higher Dimensions, Few-Body Syst 62 (2021) 101, https://doi.org/10.1007/s00601-021-01693-2

I. J. Njoku, E. Onyeocha, P. Nwaokafor and M. Onuoha, Energy eigenvalues of diatomic molecules with the shifted Deng-Fan potential using a recently introduced approximation scheme, Chemical Physics Impact 5 (2022) 100096, https://doi.org/10.1016/j.chphi.2022.100096

H. Yukawa, On the interaction of elementary particles. I, Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 17 (1935) 48, https://doi.org/10.11429/ppmsj1919.17.0_48

R. Peierls, The Theory of Nuclear Forces*, Nature 145 (1940) 687, https://doi.org/10.1038/145687a0

E. Epelbaum, H. W. Hammer and U. G. Meißner, Modern theory of nuclear forces, Rev. Mod. Phys. 81(4) (2009) 1773 https://doi.org/10.1103/RevModPhys.81.1773

R. Machleidt, Nuclear forces, AIP Conference Proceedings 1541 (2013) 61, https://doi.org/10.4249/scholarpedia.30710

X. D. Dongfang, Nuclear Force Constants Mapped by Yukawa Potential, Mathematics & Nature 1(009) (2021) 14, https://doi.org/10.13140/RG.2.2.32691.76327/2

C. Cari, A. Suparmi, S. Faniandari and L. K. Permatahati, Optical Properties in Spherical Quantum Dots of Deng-Fan Yukawa Potential Model, AIP Conference Proceedings 2540 (2023) 100014, https://doi.org/10.1063/5.0105728

C. O. Edet, U. S. Okorie, G. Osobonye, A. N. Ikot, G. J. Rampho and R. Sever, Thermal properties of Deng-Fan-Eckart potential model using Poisson summation approach, J. Math. Chem. 58(5) (2020) 989, https://doi.org/10.1007/s10910-020-01107-4

M. Hamzavi, S. M. Ikhdair and K. E. Thylwe, Equivalence of the empirical shifted Deng-Fan oscillator potential for diatomic molecules. J. Math. Chem. 51 (2013) 227, https://doi.org/10.1007/s10910-012-0075-x

H. Hassanabadi, B. H. Yazarloo, M. Mahmoudieh and S. Zarrinkamar, Dirac equation under the Deng-Fan potential and the Hulthén potential as a tensor interaction via SUSYQM, Eur. Phys. J. Plus 128 (2013) 111, https://doi.org/10.1140/epjp/i2013-13111-4

A. N. Ikot, H. Hassanabadi, B. H. Yazarloo and S. Zarrinkamar, Dirac equation for the generalized Deng-Fan potential with coulomb and Yukawa tensor interactions, Journal of the Korean Physical Society 63 (2013) 1503, https://doi.org/10.3938/jkps.63.1503

M. Abu-Shady, E. M. Khokha and T. A. Abdel-Karim, The generalized fractional NU method for the diatomic molecules in the Deng-Fan model, Eur. Phys. J. D 76(9) (2022) 159, https://doi.org/10.1140/epjd/s10053-022-00480-w

A. Maireche, Noncommutative Dirac and Schrödinger equations in the background of the new generalized Morse potential and a class of Yukawa potential with the improved Coulomb-like tensor potential as a tensor in 3D-ERQM and 3D-ENRQM symmetries, Int. J. Geo. Met. Mod. Phys. 20, No. 10 (2023) 2350162, https://doi.org/10.1142/S0219887823501621

A. Maireche, A new study of relativistic and nonrelativistic for new modified Yukawa potential via the BSM in the framework of noncommutative quantum mechanics symmetries: An application to heavy-light mesons systems, YJES 19(2) (2022) 78, https://doi.org/10.53370/001c.39615

A. Maireche, New bound-state solutions and statistical properties of the IMK-GIQYP and IMSK-IQYP models in 3D-NRNCPS symmetries, Mod. Phys. Lett. A 39, No. 09 (2024) 2450029, https://doi.org/10.1142/S0217732324500299

A. Maireche, New Eigensolution of the Klein-Gordon and Shrödinger Equations for Improved Modified Yukawa-Kratzer Potential and Its Applications Using Boop's Shift Method and Standard Perturbation Theory in the 3D-ERQM and 3D-ENRQM Symmetries, Rev. Mex. Fís. 69, no. 6 (2023) 060802, https://doi.org/10.31349/RevMexFis.69.060802.

A. Maireche, Effect of the non-commutativity of space on the improved Mobius square plus generalized Yukawa potentials of the Klein-Gordon and Schrödinger equations in 3D-RNCQS and 3D-NRNCQS symmetries, Mod. Phys. Lett. A 38, No. 22n23 (2023) 2350105, https://doi.org/10.1142/S0217732323501055

A. Maireche, The behaviour of the deformed Klein-Gordon and Schrödinger equations in 3D-RNCQS and 3D-NRNCQS symmetries under the improved Eckart plus a class of Yukawa potential, Molecular Physics 121:16 (2023) e2225649, https://doi.org/10.1080/00268976.2023.2225649

A. Maireche, Noncommutative Dirac and Schrödinger equations in the background of the new generalized Morse potential and a class of Yukawa potential with the improved Coulomb-like tensor potential as a tensor in 3D-ERQM and 3D-ENRQM symmetrie, Int. J. Geo. Met. Mod. Phys. 20, No. 10 (2023) 2350162, https://doi.org/10.1142/S0219887823501621

A. Maireche, A Model of Modified Klein-Gordon Equation with Modified Scalar-vector Yukawa Potential, Afr. Rev. Phys. 15 (2020) 1.

: A. Maireche, Diatomic Molecules with the Improved Deformed Generalized Deng-Fan Potential Plus Deformed Eckart Potential Model through the Solutions of the Modified Klein-Gordon and Schrödinger Equations within NCQM Symmetries, Ukr. J. Phys. 67(3) (2022) 183, https://doi.org/10.15407/ujpe67.3.183)

V. Gáliková and P. Prešnajder, Coulomb problem in non-commutative quantum mechanics, J. Math. Phys. 54 (2013) 052102, https://doi.org/10.1063/1.4803457

A. Boumali and H. Aounallah, Exact solutions of vector bosons in the presence of the Aharonov-Bohm and Coulomb potentials in the gravitational field of topological defects in non-commutative space-time, Rev. Mex. Fís 66(2) (2020) 192, https://doi.org/10.31349/revmexfis.66.192

H. Sobhani, H. Hassanabadi and W. S. Chung, Effects of non-commutative phase-space on prolate nuclei in the presence of Coulomb interaction, Mod. Phys. Lett. A 34(34) (2019) 1950279, https://doi.org/10.1142/S0217732319502791

H. Hassanabadi, S. S. Hosseini and S. Zarrinkamar, The Linear Interaction in Noncommutative Space; Both Relativistic and Nonrelativistic Cases, Int J Theor Phys. 54 (2015) 251, https://doi.org/10.1007/s10773-014-2219-1

X. X. Zeng, The optical appearance of charged four-dimensional Gauss-Bonnet black hole with strings cloud and non-commutative geometry surrounded by various accretions profiles, Eur. Phys. J. C 83 (2023) 129, https://doi.org/10.1140/epjc/s10052-023-11274-8

N. Kan, T. Aoyama and K. Shiraishi, Classical and quantum bicosmology with noncommutativity, Class. Quantum Grav. 40(1) (2022) 015010, https://doi.org/10.1088/1361-6382/aca868

A. Connes, Particle models and noncommutative geometry, Nucl. Phys. Proc. Suppl. 18B (1991) 29, https://doi.org/10.1016/0920-5632(91)90120-4

A. Connes, Noncommutative Geometry (ISBN-9780121858605) 1994.

A. Connes, Noncommutative geometry and reality, J. Math. Phys. 36 (11) (1995) 6194, https://doi.org/10.1063/1.531241

N. Seiberg and E. Witten, String theory and noncommutative geometry, J. High Energ. Phys. 1999 (09) (1999) 32, https://doi.org/10.1088/1126-6708/1999/09/032

S. Chaturvedi, R. Jagannathan, R., Sridhar and V. Srinivasan, J. Phys. A Math. Gen. 26 (1993) L105, https://doi.org/10.1088/0305-4470/26/3/008

S. Hassanabadi, P. Sedaghatnia, W. S. Chung, et al., Exact solution to two dimensional Dunkl harmonic oscillator in the Non-Commutative phase-space. Eur. Phys. J. Plus 138 (2023) 331, https://doi.org/10.1140/epjp/s13360-023-03933-2

H. Hassanabadi, Z. Molaee and S. Zarrinkamar, DKP oscillator in the presence of magnetic field in (1+2)-dimensions for spin-zero and spin-one particles in noncommutative phase space, Eur. Phys. J. C 72 (2012) 2217, https://doi.org/10.1140/epjc/s10052-012-2217-5

A. Maireche, The Influence of Deformation Space-Space on High and Low Energy Spectra of Fermionic Particles and Spectra of Heavy Quarkonia with Improved Hulthén Plus Hyperbolic Exponential Inversely Quadratic Potential, Ukr. J. Phys. 68(5) (2023) 328, https://doi.org/10.15407/ujpe68.5.328

A. Maireche, Deformed Dirac and Shrödinger Equations with Improved Mie-Type Potential for Diatomic Molecules and Fermionic Particles in the Framework of Extended Quantum Mechanics Symmetries, Ukr. J. Phys. 67(7) (2022) 485,. https://doi.org/10.15407/ujpe67.7.485

M. Kurkov and P. Vitale, Four-dimensional noncommutative deformations of U(1) gauge theory and L∞ bootstrap, J. High Energ. Phys. 2022 (2022) 32, https://doi.org/10.1007/JHEP01(2022)032

K. P. Gnatenko and V. M. Tkachuk, Effect of coordinate noncommutativity on the mass of a particle in a uniform field and the equivalence principle, Mod. Phys. Lett. A 31(5) (2016) 1650026, https://doi.org/10.1142/S0217732316500267

A. E. F. Djemai and H. Smail, On quantum mechanics on noncommutative quantum phase space, Commun. Theor. Phys. 41(6) (2004) 837, https://doi.org/10.1088/0253-6102/41/6/837

S. Terashima, A note on superfields and noncommutative geometry, Phys. Lett. B 482(1-3) (2000) 276, https://doi.org/10.1016/s0370-2693(00)00486-x

C. Bastos, O. Bertolami, N. C. Dias and J. N. Prata, Phase-space noncommutative quantum cosmology, Phys. Rev. D 78(2) (2008) 023516, https://doi.org/10.1103/PhysRevD.78.023516

M. Darroodi, H. Mehraban and H., Hassanabadi, The Klein-Gordon equation with the Kratzer potential in the noncommutative space. Mod. Phys. Lett. A 33 (35) (2018) 1850203, https://doi.org/10.1142/s0217732318502036

A. Maireche, Diatomic molecules and fermionic particles with improved Hellmann-generalized Morse potential through the solutions of the deformed Klein-Gordon, Dirac and Schrödinger equations in extended relativistic quantum mechanics and extended nonrelativistic quantum mechanics symmetries, Rev. Mex. Fís. 68, no. 2 (2022) 020801, https://doi.org/10.31349/RevMexFis.68.020801

E. E. N'Dolo, ,D. O. Samary, B. Ezinvi and M. N. Ounkonnou, Noncommutative Dirac and Klein-Gordon oscillators in the background of cosmic string: Spectrum and dynamics, Int. J. Geom. Met. Mod. Phys. 17(05) (2020) 2050078, https://doi.org/10.1142/s0219887820500784

A. Maireche, Approximate k-state solutions of the deformed Dirac equation in spatially dependent mass for the improved Eckart potential including the improved Yukawa tensor interaction in ERQM symmetries, Int. J. Geo. Met. Mod. Phys. 19, No. 06 (2022) 2250085, https://doi.org/10.1142/S0219887822500852

K. P. Gnatenko and V. M. Tkachuk, Composite system in rotationally invariant noncommutative phase space, Inter. J. Mod. Phys. A 33(7) (2018) 1850037, https://doi.org/10.1142/S0217751X18500379

L. I. Kang and D. Sayipjamal, Non-commutative phase space and its space-time symmetry, Chin. Phys. C 34(7) (2010) 944, https://doi.org/10.1088/1674-1137/34/7/003

S. Aghababaei and G. Rezaei, Energy level splitting of a 2D hydrogen atom with Rashba coupling in non-commutative space, Commun. Theor. Phys. 72 (2020) 125101, https://doi.org/10.1088/1572-9494/abb7cc

A. Maireche, The influence of noncommutativity on the energy spectra of bosonic particles in the framework of the DKGE with improved spatially-dependent mass including mixed scalar-vector Coulomb potentials in the ERQM symmetries, Rev. Mex. Fís. 69 (3) (2023) 030801, https://doi.org/10.31349/RevMexFis.69.030801

R. V. Mendes, Noncommutative spacetime and the PeV photons from Crab, Mod. Phys. Lett. A 38, No. 01 (2023) 2350007, https://doi.org/10.1142/S0217732323500074

P. Aschieri and L. Castellani, Noncommutative gauge and gravity theories and geometric Seiberg-Witten map, Eur. Phys. J. Spec. Top. 232, (2023) 3733, https://doi.org/10.1140/epjs/s11734-023-00831-7

A. Connes, J. Cuntz, M. A. Rieffel and G. Yu, Noncommutative Geometry, Oberwolfach Reports 10(3) (2013) 2553, https://doi.org/10.4171/OWR/2013/45

P. M. Ho and H. C. Kao, Noncommutative Quantum Mechanics from Noncommutative Quantum Field Theory, Phys. Rev. Lett. 88(15) (2002) 151602, https://doi.org/10.1103/physrevlett.88.151602

M. A. Dalabeeh, The noncommutative quadratic Stark effect for the H-atom, J. Phys. A: Math. Gen. 38(7) (2005) 1553, https://doi.org/10.1088/0305-4470/38/7/010

H. Motavalli and A.R. Akbarieh, KLEIN-GORDON EQUATION FOR THE COULOMB POTENTIAL IN NONCOMMUTATIVE SPACE, Mod. Phys. Lett. A 25(29) (2010) 2523, https://doi.org/10.1142/s0217732310033529

B. Mirza and M. Mohadesi, The Klein-Gordon and the Dirac oscillators in a noncommutative space, Commun. Theor. Phys. (Beijing, China) 42 (2004) 664, https://doi.org/10.1088/0253-6102/42/5/664

F. Bopp, La mécanique quantique est-elle une mécanique statistique classique particulière, Annales de l'institut Henri Poincaré 15 No. 2 (1956) 81.

L. Mezincescu, Star Operation in Quantum Mechanics (2000). https://arxiv.org/abs/hep-th/0007046.

J. Gamboa, M. Loewe and J. C. Rojas, Noncommutative quantum mechanics, Phys. Rev. D 64 (2001) 067901, https://doi.org/10.1103/PhysRevD.64.067901

L. Gouba, A comparative review of four formulations of noncommutative quantum mechanics, Int. J. Mod. Phys. A 31(19) (2016) 1630025, https://doi.org/10.1142/s0217751x16300258

T. Curtright, D. Fairlie and C. Zachos, Features of time-independent Wigner functions, Phys. Rev. D 58 (1998) 025002, https://doi.org/10.1103/PhysRevD.58.025002

T. Harko and S. D. Liang, Energy-dependent noncommutative quantum mechanics, Eur. Phys. J. C 79 (2019) 300, https://doi.org/10.1140/epjc/s10052-019-6794-4

Solimanian, M., Naji, J., Ghasemian, K.: The noncommutative parameter for cc in nonrelativistic limit. Eur. Phys. J. Plus 137, 331 (2022). https://doi.org/10.1140/epjp/s13360-022-02546-5

A. Maireche, Spectrum of hydrogen atom ground state counting quadratic term in Schrödinger Equation: Afr. Rev. Phys. 10(1), 177 (2015).

Bernardini, A.E., Bertolami, O.: Emergent time crystals from phase-space noncommutative quantum mechanics. Phys. Lett. B 835 (2022) 137549. https://doi.org/10.1016/j.physletb.2022.137549

A. Maireche, Atomic spectrum for Schrödinger equation with rational spherical type potential in non-commutative space and phase; Afr. Rev. Phys. 10(1), 373 (2015).

K. P. Gnatenko and O. V. Shyiko, Effect of noncommutativity on the spectrum of free particle and harmonic oscillator in rotationally invariant noncommutative phase space, Mod. Phys. Lett. A 33(16) (2018) 1850091, https://doi.org/10.1142/S0217732318500918

A. Maireche, A recent study of quantum atomic spectrum of the lowest excitations for Schrödinger equation with typical rational spherical potential at Planck's and Nanoscales, Journal of Nano- and Electronic Physics 7(3) (2015) 03047.

A. Maireche, The behaviour of the deformed Klein-Gordon and Schrödinger equations in 3D-RNCQS and 3D-NRNCQS symmetries under the improved Eckart plus a class of Yukawa potential, Molecular Physics 121:16 (2023) e2225649, https://doi.org/10.1080/00268976.2023.2225649

A. Maireche, New relativistic and nonrelativistic investigation of deformed Klein-Gordon and Schrödinger equations for new improved screened Kratzer potential in the framework of noncommutative space, Int. J. Geo. Met. Mod. Phys. 20 (2023) No. 14, 2450016, https://doi.org/10.1142/S0219887824500166

A. Maireche, Improved energy spectra of the deformed Klein-Gordon and Schrödinger equations under the improved Varshni plus modified Kratzer potential model in the 3D-ERQM and 3D-ENRQM symmetries, Indian J Phys 97 (2023) 3567, https://doi.org/10.1007/s12648-023-02681-4

A. Maireche, New bound-state solutions of the deformed klein-gordon and schrödinger equations for arbitrary l-state with the modified equal vector and scalar manning-rosen plus a class of yukawa potentials in rncqm and nrncqm symmetries, J. Phys. Stud. 25(4) (2021) 4301, https://doi.org/10.30970/jps.25.4301

A. Maireche, Relativistic Symmetries of Bosonic Particles and Antiparticles in the Background of the Position-Dependent Mass for the Improved Deformed Hulthen Plus Deformed Type-Hyperbolic Potential in 3D-EQM Symmetries, East European Journal of Physics 2022(4) (2022) 200, https://doi.org/10.26565/2312-4334-2022-4-21

S. D. Liang, Klein-Gordon Theory in Noncommutative Phase Space. Symmetry journal 15(2)367 (2023). https://doi.org/10.3390/sym15020367

A. Maireche, The Klein-Gordon equation with modified Coulomb plus inverse-square potential in the noncommutative three-dimensional space, Mod. Phys. Lett. A. 35, No. 05 (2020) 2050015, https://doi.org/10.1142/S0217732320500157

A. Maireche, Heavy quarkonium systems for the deformed unequal scalar and vector Coulomb-Hulthén potential within the deformed effective mass Klein-Gordon equation using the improved approximation of the centrifugal term and Bopp's shift method in RNCQM symmetries, Int. J. Geom. Met. Mod. Phys. 18(13) (2021) 2150214, https://doi.org/10.1142/S0219887821502145

A. Maireche, Arbitrary (k, l) States-Solutions of the Dirac and Schrödinger Equations Interacting with Improved Spatially-Dependent Mass Coulomb Potential with an improved Coulomb-like tensor interaction Model for H-atoms from 3D-RNCS and 3DNRNCS symmetries. YJES 20(2) (2023)10, https://doi.org/10.53370/001c.92147

M. Z. Abyaneh and M. Farhoudi, Electron dynamics in noncommutative geometry with magnetic field and Zitterbewegung phenomenon, Eur. Phys. J. Plus 136 (2021) 863, https://doi.org/10.1140/epjp/s13360-021-01855-5

L. Dąbrowski, F. D'Andrea and A. Sitarz, The Standard Model in noncommutative geometry: fundamental fermions as internal forms, Lett Math Phys 108 (2018) 1323, https://doi.org/10.1007/s11005-017-1036-x

Z. Derakhshani and M. Ghominejad, Spin and pseudo-spin symmetries of fermionic particles with an energy-dependent potential in non-commutative phase space, Chin. J. Phys. 54(5) (2016) 761, https://doi.org/10.1016/j.cjph.2016.07.011

A. Maireche, Noncommutative Dirac and Schrödinger equations in the background of the new generalized Morse potential and a class of Yukawa potential with the improved Coulomb-like tensor potential as a tensor in 3D-ERQM and 3D-ENRQM symmetries, Int. J. Geom. Met. Mod. Phys 20, No. 10 (2023) 2350162, https://doi.org/10.1142/S0219887823501621

A. Maireche, New spin and p-spin symmetries of the deformed Dirac equation for the IMRQHPs including the improved YLT interaction in three-dimensional extended relativistic quantum mechanics symmetries, Mod. Phys. Lett. A. 38, No. 36n37 (2023) 2350162, https://doi.org/10.1142/S0217732323501626R.

R. Cuzinatto, M. De Montigny and P. J. Pompeia, Non-commutativity and non-inertial effects on a scalar field in a cosmic string space-time: II. Spin-zero Duffin-Kemmer-Petiau-like oscillator, Class. Quantum Grav. 39 (2022) 075007, https://doi.org/10.1088/1361-6382/ac51bc

A. Saidi and M.B. Sedra, Spin-one (1 + 3)-dimensional DKP equation with modified Kratzer potential in the non-commutative space. Mod. Phys. Lett. A 35(5) (2020) 2050014, https://doi.org/10.1142/s0217732320500145

M. Hadj Moussa, Duffin-Kemmer-Petiau Oscillator with Spin Non-Commutativity, Int J Theor Phys 62 (2023) 218, https://doi.org/10.1007/s10773-023-05466-x

H. Aounallah and B. Boumali, Solutions of the Duffin-Kemmer Equation in Non-Commutative Space of Cosmic String and Magnetic Monopole with Allowance for the Aharonov-Bohm and Coulomb Potentials, Phys. Part. Nuclei Lett. 16 (2019) 195, https://doi.org/10.1134/S1547477119030038

R. L. Greene and C. Aldrich, Variational wave functions for a screened Coulomb potential, Phys. Rev. A 14 (1976) 2363, https://doi.org/10.1103/PhysRevA.14.2363

A. Ahmadov, M. Demirci, S. Aslanova and M. Mustamin, Arbitrary l-state solutions of the Klein-Gordon equation with the Manning-Rosen plus a Class of Yukawa potentials, Phys. Lett. A 384(12) (2020) 126372, https://doi.org/10.1016/j.physleta.2020.126372

A. Tas, O. Aydogdu and M. Salti, Dirac particles interacting with the improved Frost-Musulin potential within the effective mass formalism, Annals of Physics 379 (2017) 67, https://doi.org/10.1016/j.aop.2017.02.010

S. Medjedel and K. Bencheikh, Exact analytical results for density profile in Fourier space and elastic scattering function of a rotating harmonically confined ultra-cold Fermi gas, Phys. Lett. A 383(16) (2019) 1915, https://doi.org/10.1016/j.physleta.2019.03.021

M. M. Sabet, Solution of radial Schrödinger equation with yukawa potential using bethe ansatz method, Acta Physica Polonica A 140(1) (2021), https://doi.org/10.12693/APhysPolA.140.97)

A. Diaf, Arbitrary l-state solutions of the Feynman propagator with the Deng-Fan molecular potential. In Journal of Physics: Conference Series IOP Publishing 574, No. 1 (2015) 012022, https://doi.org/10.1088/1742-6596/574/1/012022)

A. N. Ikot, U. S. Okorie, G. J. Rampho, C. O. Edet, R. Horchani, A. Abdel-aty, N. A. Alshehri and S. K. Elagan, Bound and Scattering State Solutions of the Klein-Gordon Equation with Deng-Fan Potential in Higher Dimensions, Few-Body Systems 62 (2021) 101, https://doi.org/10.1007/s00601-021-01693-2

V. Kumar, R. M. Singh,S. B. Bhardwaj, R. Rani and F. Chand, Analytical solutions to the Schrödinger equation for a generalized Cornell potential and its applications to diatomic molecules and heavy mesons, Mod. Phys. Lett. A 37(02) (2022) 2250010,

M. Abu-Shady, T. A. Abdel-Karim and S. Y. Ezz-Alarab,Masses and thermodynamic properties of heavy mesons in the non-relativistic quark model using the Nikiforov-Uvarov method. J Egypt Math Soc 27 (2019) 14, https://doi.org/10.1186/s42787-019-0014-0

R. Rani, S. B. Bhardwaj and F. Chand, Mass Spectra of Heavy and Light Mesons Using Asymptotic Iteration Method, Commun. Theor. Phys.70 (2018) 179, https://doi.org/10.1088/0253-6102/70/2/179

K.P. Gnatenko and V. M. Tkachuk, Upper bound on the momentum scale in noncommutative phase space of canonical type, EPL 127 (2019) 20008 , https://doi.org/10.1209/0295-5075/127/20008.

K. Gnatenko, Composite system in noncommutative space and the equivalence principle, Phys. Lett. A 377(43) (2013) 3061, https://doi.org/10.1016/j.physleta.2013.09.036

A. Maireche, Bound-state solutions of the modified klein-gordon and Schrödinger equations for arbitrary l-state with the modified morse potential in the symmetries of noncommutative quantum mechanics, J. Phys. Stud. 25 (2021) 1002, https://doi.org/10.30970/jps.25.1002

C. Jia, C. Wang, L. Zhang, Z. Peng, R. Zeng and X. You, Partition function of improved Tietz oscillators, Chem. Phys. Lett. 676 (2017) 150, https://doi.org/10.1016/j.cplett.2017.03.068

X. Song, C. Wang and C., Jia, Thermodynamic properties for the sodium dimer, Chem. Phys. Lett. 673 (2017) 50, https://doi.org/10.1016/j.cplett.2017.02.010

C. P. Onyenegecha, E. E. Oguzie, I. J. Njoku et al., Klein-Gordon equation and thermodynamic properties with the Hua plus modified Eckart potential (HPMEP). Eur. Phys. J. Plus 136 (2021) 1153, https://doi.org/10.1140/epjp/s13360-021-02142-z

I. Njoku, C. Onyenegecha, C. Okereke, A. Opara, U. Ukewuihe and F. Nwaneho, Approximate solutions of Schrödinger equation and thermodynamic properties with Hua potential, Results in Physics 24 (2021) 104208, https://doi.org/10.1016/j.rinp.2021.104208

S. H. Dong, M. Lozada-Cassou, J. Yu, F. Jiménez-Ángeles and A. L. Rivera, Hidden symmetries and thermodynamic properties for a harmonic oscillator plus an inverse square potential, Int. J. Qua. Chem. 107(2) (2007) 366, https://doi.org/10.1002/qua.21103

A, D. Antia, I. B. Okon, C. N. Isonguyo et al., Bound state solutions and thermodynamic properties of modified exponential screened plus Yukawa potential, J Egypt Math Soc 30 (2022) 11, https://doi.org/10.1186/s42787-022-00145-y

Downloads

Published

2025-03-01

How to Cite

[1]
A. Maireche, “Investigating the effects of phase-space non-commutativity coordinates on the modified Deng-Fan Yukawa potential model and thermodynamic properties in 3D(NR-NCPS) and 3D(NR-QM) symmetries”, Rev. Mex. Fís., vol. 71, no. 2 Mar-Apr, pp. 020401 1–, Mar. 2025.

Issue

Section

04 Atomic and Molecular Physics