Synthesis of boron nanoparticles by a hybrid “polyol-solvothermal” process using glycerol as reducing agent

Authors

  • A. Casas Mendoza Instituto Politécnico Nacional
  • A. Garc´ıa Murillo Instituto Politécnico Nacional
  • F. de J. Carrillo Romo Instituto Politécnico Nacional
  • J. Ortíz Landeros Instituto Politécnico Nacional

DOI:

https://doi.org/10.31349/RevMexFis.71.021003

Keywords:

Green synthesis; glycerol; hybrid method; boron; nanoparticle

Abstract

In this article, a novel hybrid synthesis process called the “polyol-solvothermal process” is presented. This process utilizes a polyol-solvothermal hybrid method under acidic conditions (pH = 1) to obtain amorphous boron nanoparticles with a spherical morphology. The synthesis parameters include different concentrations of metalloid ions (1 and 2 M), glycerol (50% and 80% w/w), and PVP (0.01 g and 0.02 g). To examine the morphology and particle size, surface plasmon resonance (SPR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) were employed. The TEM analysis revealed the presence of spherical nanoparticles with an average size of ~5 nm and quasi-spherical microparticles with an average diameter of 3.5 µm. This suggests the presence of microparticles composed of smaller particles, which was confirmed by the surface plasmon resonance (SPR) results. The SPR analysis revealed bands around 275 nm, indicating the presence of boron nanoparticles. The x-ray diffraction (XRD) results show a single peak associated with the formation of amorphous boron. Furthermore, the FT-IR studies identified a peak between 1019 and 1040 cm-1, which is related to the stretching vibrational bond of CH2-OH, indicating the decomposition of glycerol into primary alcohols, which acted as reducers. Another band, located at approximately 500 cm-1and characteristic of the M-O vibrational bond, was associated with the formation of metal nanoparticles.

References

I.Khan, K. Saeed, and I. Khan, Nanoparticles: Properties, applications and toxicities, Arabian Journal of Chemistry, 12 (2019) 908, https://doi.org/10.1016/J.ARABJC.2017.05.011

N. Narayan, A. Meiyazhagan, and R. Vajtai, Metal Nanoparticles as Green Catalysts, Materials 12 (2019) 3602, https://doi.org/10.3390/MA12213602

H. W. Tan, J. An, C. K. Chua, and T. Tran, Metallic Nanoparticle Inks for 3D Printing of Electronics, Adv. Electron. Mater. 5 (2019) 1800831, https://doi.org/10.1002/AELM.201800831

M. D. Nguyen, H. V. Tran, S. Xu, and T. R. Lee, Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications, Applied Sciences, 11 (2021) 11301, https://doi.org/10.3390/APP112311301

O. Matátková, J. Michailidu, A. Miškovská, I. Kolouchová, J. Masák, and A. Čejková, Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods, Biotechnol. Adv. 58 (2022) 107905, https://doi.org/10.1016/J.BIOTECHADV.2022.107905

X. Cheng, Tuning metal catalysts via nitrogen-doped nanocarbons for energy chemistry: From metal nanoparticles to single metal sites, Energy Chem, 3 (2021) 100066, https://doi.org/10.1016/J.ENCHEM.2021.100066

J. P. Scheifers, Y. Zhang, and B. P. T. Fokwa, Boron: Enabling Exciting Metal-Rich Structures and Magnetic Properties, Acc Chem Res, 50 (2017) 2317, https://doi.org/10.1021/ACS.ACCOUNTS.7B00268

P. Govindrao Jamkhande, N. W. Ghule, A. Haque Bamer, and M. G. Kalaskar, Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications, Journal of Drug Delivery Science and Technology 53 (2019) 101174, https://doi.org/10.1016/j.jddst.2019.101174

A. Banisharif, P. Estellé, A. Rashidi, S. Van Vaerenbergh, and M. Aghajani, Heat transfer properties of metal, metal oxides, and carbon water-based nanofluids in the ethanol condensation process, Colloids Surf A Physicochem Eng Asp, 622 (2021) 126720, https://doi.org/10.1016/J.COLSURFA.2021.126720

Z. Lin , Rapid synthesis of metallic and alloy micro/nanoparticles by laser ablation towards water, Appl. Surf. Sci. 504 (2020) 144461, https://doi.org/10.1016/J.APSUSC.2019.144461

K. Kavitha, T. Subba Rao, and R. Padma Suvarna, Synthesis and characterization of ZnO-CuO nanocomposites, AIP Conf. Proc., 2269 (2020) 030078, https://doi.org/10.1063/5.0019509/724014

S. Kamrani, D. Penther, A. Ghasemi, R. Riedel, and C. Fleck, Microstructural characterization of Mg-SiC nanocomposite synthesized by high energy ball milling, Advanced Powder Technology, 29 (2018) 1742, https://doi.org/10.1016/J.APT.2018.04.009

K. Parveen, V. Banse, and L. Ledwani, Green synthesis of nanoparticles: Their advantages and disadvantages, AIP Conf Proc, 1724 (2016) 020048, https://doi.org/10.1063/1.4945168

D. Zhang, X. L. Ma, Y. Gu, H. Huang, and G. W. Zhang, Green Synthesis of Metallic Nanoparticles and Their Potential Applications to Treat Cancer, Front Chem, 8 (2020) https://doi.org/10.3389/FCHEM.2020.00799

L. Y. Meng, B. Wang, M. G. Ma, and K. L. Lin, The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials, Mater Today Chem, 1- 2 (2016) 63, https://doi.org/10.1016/J.MTCHEM.2016.11.003

M. Parashar, V. K. Shukla, and R. Singh, Metal oxides nanoparticles via sol-gel method: a review on synthesis, characterization and applications, Journal of Materials Science: Materials in Electronics, 31 (2020) 3729, https://doi.org/10.1007/S10854-020-02994-8

L. P. Faden et al., Sc, Zr, Hf, and Mn Metal Nanoparticles: Reactive Starting Materials for Synthesis Near Room Temperature, Inorg Chem, 63 (2024) 1020, https://doi.org/10.1021/ACS.INORGCHEM.3C03074

O. Ogunkunle and N. A. Ahmed, A review of global current scenario of biodiesel adoption and combustion in vehicular diesel engines, Energy Reports, 5 (2019) 1560, https://doi.org/10.1016/j.egyr.2019.10.028

J. Kou, C. Bennett-Stamper, and R. S. Varma, Green synthesis of noble nanometals (Au, Pt, Pd) using glycerol under microwave irradiation conditions, ACS Sustain Chem Eng, 1 (2013) 810, https://doi.org/10.1021/SC400007P

R. Govindaraju, S. S. Chen, L. P. Wang, H. M. Chang, and M. Pasawan, Significance of Membrane Applications for High-Quality Biodiesel and Byproduct (Glycerol) in Biofuel Industries-Review, Curr Pollut Rep, 7 (2021) 128, https://doi.org/10.1007/S40726-021-00182-8

R. Parveen, S. Ullah, R. Sgarbi, and G. Tremiliosi-Filho, One-pot ligand-free synthesis of gold nanoparticles: The role of glycerol as reducing-cum-stabilizing agent, Colloids Surf a Physicochem Eng Asp, 565 (2019) 162, https://doi.org/10.1016/J.COLSURFA.2019.01.005

T. Liu, D. R. Baek, J. S. Kim, S. W. Joo, and J. K. Lim, Green Synthesis of Silver Nanoparticles with Size Distribution Depending on Reducing Species in Glycerol at Ambient pH and Temperatures, ACS Omega, 5 (2020) 16246, https://doi.org/10.1021/ACSOMEGA.0C02066

A. F. Cristino, I. A. S Matias, D. E. N Bastos, R. Galhano dos Santos, A. P. C Ribeiro, and L. M. D. R. S Martins, Glycerol Role in Nano Oxides Synthesis and Catalysis, Catalysts 10 (2020) 1406, https://doi.org/10.3390/catal10121406

G. Habibullah, J. Viktorova, and T. Ruml, Current strategies for noble metal nanoparticle synthesis. Nanoscale Research Letters, 16 (2021) 47, https://doi.org/10.1186/s11671-021-03480-8

A. Demirbas, E. Kislakci, Z. Karaagac, I. Onal, N. Ildiz, and I. Ocsoy, Preparation of biocompatible and stable iron oxide nanoparticles using anthocyanin integrated hydrothermal method and their antimicrobial and antioxidant properties, Mater Res Express, 6 (2019) 125011, https://doi.org/10.1088/2053-1591/AB540C

T. A. Taha, A. A. Azab, and M. A. Sebak, Glycerol-assisted sol-gel synthesis, optical, and magnetic properties of NiFe2O4 nanoparticles, J. Mol. Struct, 1181 (2019) 14, https://doi.org/10.1016/J.MOLSTRUC.2018.12.075

A. Nirmala Grace and K. Pandian, One pot synthesis of polymer protected Pt, Pd, Ag and Ru nanoparticles and nanoprisms under reflux and microwave mode of heating in glycerol-A comparative study, Mater Chem. Phys. 104 (2007) 191, https://doi.org/10.1016/J.MATCHEMPHYS.2007.03.009

H. Chen et al., Construction of a Nanoporous Highly Crystalline Hexagonal Boron Nitride from an Amorphous Precursor for Catalytic Dehydrogenation, Angewandte Chemie, 131 (2019) 10736, https://doi.org/10.1002/ANGE.201904996

F. Lu et al., Polypyrrole-functionalized boron nitride nanosheets for high-performance anti-corrosion composite coating, Surf. Coat. Technol. 420 (2021) 127273, https://doi.org/10.1016/J.SURFCOAT.2021.127273

I. D. Giovannelli-Maizo, A. P. Luz, and V. C. Pandolfelli, Advanced boron-containing refractory castables bonded with calcium-free binders, Ceram. Int. 45 (2019) 8774, https://doi.org/10.1016/J.CERAMINT.2019.01.202

M. Li et al., Highly thermal conductive and electrical insulating polymer composites with boron nitride, Compos B. Eng., 184 (2020) 107746, https://doi.org/10.1016/J.COMPOSITESB.2020.107746

S. Huang, S. Deng, Y. Jiang, and X. Zheng, Experimental effective metal oxides to enhance boron combustion, Combust Flame, 205 (2019) 278, https://doi.org/10.1016/J.COMBUSTFLAME.2019.04.018

J. M. Maita, G. Song, M. Colby, and S. W. Lee, Atomic arrangement and mechanical properties of chemical-vapordeposited amorphous boron, Mater Des, 193 (2020) 108856, https://doi.org/10.1016/J.MATDES.2020.108856

A. Alrebh and J. L. Meunier, Synthesis of boron nitride nanosheets powders using a plasma based bottom-up approach, 2d Mater, 8 (2021) 045018, https://doi.org/10.1088/2053-1583/AC1854

T. Xu et al., Advances in synthesis and applications of boron nitride nanotubes: A review, Chemical Engineering Journal, 431 (2022) 134118, https://doi.org/10.1016/J.CEJ.2021.134118

T. Liu, D. R. Baek, J. S. Kim, S. W. Joo, and J. K. Lim, Green Synthesis of Silver Nanoparticles with Size Distribution Depending on Reducing Species in Glycerol at Ambient pH and Temperatures, ACS Omega, 5 (2020) 16246, https://doi.org/10.1021/ACSOMEGA.0C02066/ASSET/IMAGES+/LARGE/AO0C02066 0010.JPEG

Z. H. Dou, T. A. Zhang, G. Y. Shi, C. Peng, M. Wen, and J. C. He, Preparation and characterization of amorphous boron powder with high activity, Transactions of Nonferrous Metals Society of China 24 (2014) 1446, https://doi.org/10.1016/S1003-6326(14)63211-8

Z. H. Dou, T. A. Zhang, J. C. He, and Y. Huang, Preparation of amorphous nano-boron powder with high activity by combustion synthesis, J. Cent. South. Univ., 21 (2014) 9, https://doi.org/10.1007/S11771-014-2016-2

A. Najafi, F. Golestani-Fard, H. R. Rezaie, and S. P. Saeb, Sol-Gel synthesis and characterization of SiC-B4C nano powder, Ceram Int, 47 (2021) 6376, https://doi.org/10.1016/J.CERAMINT.2020.10.218

M. Giuseppe et al., Pressureless sintering and properties of αSiC-B4C composite. Journal of the European Ceramic Society, 21 (2023) 633, https://doi.org/10.1016/S0955-2219(00)00244-2

E. F. M. El-Zaidia et al., Effect of film thickness on structural, electrical and optical properties of amorphous boron subphthalocyanine chloride thin film, Opt. Mater (Amst), 138 (2023) 113691, https://doi.org/10.1016/J.OPTMAT.2023.113691

L. Cornejo, Resonancia del plasmón de la superficie (RPS). Accessed: Mar. 19, (2024), https://nuevastecnologiasymateriales.com/resonanciadel-plasmon-de-la-superficie-rps-propied

Available: https://nuevastecnologiasymateriales.com/resonanciadel-plasmon-de-la-superficie-rps-propiedadesoptoelectronicas/

S. A. Lee and S. Link, Chemical Interface Damping of Surface Plasmon Resonances, Acc Chem Res, 54 (2021) 1950, https://doi.org/10.1021/ACS.ACCOUNTS.0C00872

A. I. El-Batal, G. S. El-Sayyad, N. E. Al-Hazmi, and M. Gobara, Antibiofilm and Antimicrobial Activities of Silver Boron Nanoparticles Synthesized by PVP Polymer and Gamma Rays Against Urinary Tract Pathogens, J Clust Sci, 30 (2019) 947, https://doi.org/10.1007/S10876-019-01553-4

S. A. Uspenskii et al., Russian Text The Author(s), Doklady Chemistry, 491 (2020) 20, https://doi.org/10.1134/S0012500820030027

A. I. El-Batal, M. S. Attia, M. M. Nofel, and G. S. El-Sayyad, Potential Nematicidal Properties of Silver Boron Nanoparticles: Synthesis, Characterization, In Vitro and In Vivo Root-Knot Nematode (Meloidogyne incognita) Treatments, J. Clust. Sci., 30 (2019) 687, https://doi.org/10.1007/S10876-019-01528-5

K. Seo, K. Sinha, E. Novitskaya, and O. A. Graeve, Polyvinylpyrrolidone (PVP) effects on iron oxide nanoparticle formation, Mater Lett, 215 (2018) 203, https://doi.org/10.1016/J.MATLET.2017.12.107

S. K. Maurya, R. A. Ganeev, A. Rout, and C. Guo, Influence of PVP polymer concentration on nonlinear absorption in silver nanoparticles at resonant excitation, Appl Phys A Mater Sci Process, 126 (2020) 1, https://doi.org/10.1007/S00339-019-3208-2/FIGURES/5

T. Song et al., A review of the role and mechanism of surfactants in the morphology control of metal nanoparticles, Nanoscale, 13 (2021) 3895, https://doi.org/10.1039/D0NR07339C

I. A. Safo, M. Werheid, C. Dosche, and M. Oezaslan, The role of polyvinylpyrrolidone (PVP) as a capping and structure-directing agent in the formation of Pt nanocubes, Nanoscale Adv, 1 (2019) 3095, https://doi.org/10.1039/C9NA00186G

N. Aliyeva, T. C. Canak, and ˙I. E. Serhatlı, Synthesis and characterization of boron-acrylate/Santa Barbara Amorphous15 polymer composite, J. Appl. Polym. Sci., 138 (2021) 50445 https://doi.org/10.1002/APP.50445

P. Saravanan, K. SenthilKannan, R. Divya, M. Vimalan, S. Tamilselvan, and D. Sankar, A perspective approach towards appreciable size and cost-effective solar cell fabrication by synthesizing ZnO nanoparticles from Azadirachta indica leaves extract using domestic microwave oven, J. Mater. Science: Materials in Electronics, 31 (2020) 4301, https://doi.org/10.1007/S10854-020-02985-9

Downloads

Published

2025-03-01

How to Cite

[1]
A. Casas Mendoza, A. García Murillo, F. de J. Carrillo Romo, and J. Ortíz Landeros, “Synthesis of boron nanoparticles by a hybrid ‘polyol-solvothermal’ process using glycerol as reducing agent”, Rev. Mex. Fís., vol. 71, no. 2 Mar-Apr, pp. 021003 1–, Mar. 2025.