Multiphoton dissociation of thiophene with 532 and 355 nm
DOI:
https://doi.org/10.31349/RevMexFis.71.020403Keywords:
Thiophene; molecular dissociation; multiphotoionizationAbstract
The fragmentation of thiophene was investigated using incident laser radiation with two wavelengths, 532 and 355 nm. The results indicate that the intense fragmentation of thiophene molecules decreases at high radiation intensities as was evidenced by the ion C+. Additionally, the effect of wavelength on the formation of the parent ion, as well as the production of lighter fragments, such as C2H2+, is examined. Finally, the dissociation between thiophene and furan to assess the influence of heteroatoms on the fragmentation of these heterocyclic molecules is compared. Our observations reveal the role of hydrogen migration on these heteroatoms.
References
Rezaiyehraad, Abdolali Alizadeh and Reza. Recyclization of 3-formylchromone with phenacyl thiocyanate: fast and efficient access to thiophenes and 2-aminothiophenes bearing oacylphenol moiety. J. Sulphur Chem:, 43, (2022), 264-274, . https://doi.org/10.1080/17415993.2021.2007920.
Fatima S. Mehdhar, Ebrahim Abdel-Galil, Ali Saeed, Ehab Abdel-Latif, and Ghada E. Abd El Ghani. Synthesis of new substituted thiophene derivatives and evaluating their antibacterial and antioxidant activities. Polycycl Aromat Compd, 43, Issue 5, (2022), 4496-4511. https://doi.org/10.1080/10406638.2022.2092518.
Schulze-Makuch, Jacob Heinz and Dirk. Thiophenes on Mars: Biotic or Abiotic Origin? Astrobiology, 20, (2020), 552-561 https://doi.org/10.1089/ast.2019.2139.
Stefano Falcinelli, MarzioRosi, Pietro Candori, Franco Vecchiocattivi, James M.Farrar, Fernando Pirani, Nadia Balucani, Michele Alagia, Robert Richter, Stefano Stranges. Kinetic energy release in molecular dications fragmentation after VUV and EUV ionization and escape from planetary atmospheres. Planetary Space Science, 99, (2014), 149–157, http://dx.doi.org/10.1016/j.pss.2014.04.020.
Monali N. Kawade, D. Srinivas, Hari P. Upadhyaya. Kinetics of gas phase OH radical reaction with thiophene in the 272–353 K temperature range: A laser induced fluorescence study. Chem. Phys. Lett, 682, (2017), 154–159, http://dx.doi.org/10.1016/j.cplett.2017.05.072.
Michael H. Palmer, Isobel C. Walker, Martyn F. Guest. The electronic states of thiophene studied by optical (VUV) absorption, near-threshold electron energy-loss (EEL) spectroscopy and ab initio multi-reference configuration interaction calculations. Chem. Phys, 241, (1999), 275–296 https://doi.org/10.1016/S0301-0104(98)00425-X.
Zijun Yan, Yu Luo, Bo Chen, Fenglei Wang, Lang Chen, Zining Wang, Pengwei Zhao, Jinyang Kang, Zhihai Fu, Yongdong Jin, Yuanhua Wang, Chuanqin Xia. Thiophene-based conjugated ultra-micropore rigid polymers for selective xenon capture. Chem. Eng. J, 453, Part 2,. (2023), 139934 https://doi.org/10.1016/j.cej.2022.139934.
D.M.P. Holland, L. Karlsson, W. von Niessen. The identification of the outer valence shell p-photoelectron bands in furan, pyrrole and thiophene. J Electron Spectrosc, 113, (2001), 221–239.
Eberhardt, Robert G. Hayes and Wolfgang. Electron-ion coincidences studies of the fragmentation of thiophene and of tetrahydrothiophene upon core ionization. J. Chem. Phys, 94, (1991), 397. https://doi.org/10.1063/1.460730.
M.S.P. Mundim, A. Mocellin, N. Makiuchi, A. Naves de Brito, M. Attie, N. Correia. Study of thiophene inner shell photofragmentation. J. Electron Spectrosc. Relat. Phenom, 155, (2007), 58-63. doi:10.1016/j.elspec.2006.12.018.
Jens K. Winkler, Werner Karow, Paul Rademacher. Gas-phase pyrolysis of heterocyclic compounds, part 1 and 2: flow pyrolysis and annulation reactions of some sulfur heterocycles: thiophene, benzo[b]thiophene, and dibenzothiophene. A product-oriented study. J Anal Appl Pyrolysis, 306 , (2004), 295–308. https://doi.org/10.1016/S0165-2370(00)00218-7.
A. K. Nayak, S. K. Sarkar, R. S. Karve, V. Parthasarathy, K. V. S. Rama Rao, J. P. Mittal, S. L. N. G. Krishnamachari, and T. V. Venkitachalam. Infrared Laser Multiple Photon Dissociation of Thiophene in Gas Phase. Appl. Phys. B, 48, (1989), 437-443,. https://doi.org/10.1007/BF00694545.
P. Linusson, L. Storchi, F. Heijkenskjöld, E. Andersson, M. Elshakre, B. Pfeifer, M. Colombet, J. H. D. Eland, L. Karlsson, J. E. Rubensson F. Tarantelli and R. Feife. Double photoionization of thiophene and bromine-substituted thiophenes. J. Chem. Phys, 129, (2008), 234303. https://doi.org/10.1063/1.3039082.
Paranjothy, Erum Gull Naz and Manikandan. Theoretical studies of unimolecular decomposition of thiophene at high temperatures. Electron. Struct, 3, (2021), 045003. https://doi.org/10.1088/2516-1075/ac391f.
B. Barc, M. Ryszka, J. Spurrell, M. Dampc, P. Limao-Vieira, R. Parajuli, N. J. Mason, and S. Eden. Multi-photon ionization and fragmentation of uracil: Neutral excited-state ring opening and hydration effects. J. Chem. Phys, 139, (2013), 244311. https://doi.org/10.1063/1.4851476.
A. Gedanken, M. B. Robin, and N. A. Kuebler. Nonlinear photochemistry in organic, inorganic, and organometallic systems. J. Chem, 86, (1982), 4096-4107, . https://doi.org/10.1021/j100218a004.
E. Kukk, D. T. Ha, Y. Wang, D. G. Piekarski, S. Diaz-Tendero, K. Kooser, E. Itala, H. Levola, M. Alcami, E. Rachlew, and F. Martin. Internal energy dependence in x-ray-induced molecular fragmentation: An experimental and theoretical study of thiophene. Phys Rev A, 91, (2015), 043417,. doi: 10.1103/PhysRevA.91.043417.
E.E. Rennie, D.M.P. Holland, D.A. Shaw, C.A.F. Johnson, J.E. Parker. A study of the valence shell spectroscopic and thermodynamic properties of thiophene by photoabsorption and photoion spectroscopy. Chem. Phys, 62, 2002, 123–141.. doi:10.1016/j.chemphys.2004.07.029.
Eladio Prieto Zamudio, Carmen Cisneros Gudiño, Luisa X. Hallado Abaunza, Ignacio Álvarez Torres, Alfonso E. Guerrero Tapia. Effect of radiation intensity on the fragmentation of furan through multiphoton ionization at 532 and 355 nm. Radiat. Phys. Chem. 198, (2002), 110261, https://doi.org/10.1016/j.radphyschem.2022.110261.
Origin(Pro), Version Number (Version 2019). OriginLab Corporation, Northampton, MA, USA.
Michael H. Palmer, Isobel C. Walker, Martyn F. Guest. J. The electronic states of thiophene studied by optical (VUV) absorption,near-threshold electron energy-loss (EEL) spectroscopy and ab initio multi-reference con_guration interaction calculations. Chem. Phys, 241, Issue 3 , (1999), 275-296. https://doi.org/10.1016/S0301-0104(98)00425-X.
1016/S0301-0104(98)00425-X
Jian Wan, Masahiko Hada, Masahiro Ehara, and Hiroshi Nakatsuji.J. Electronic excitation spectrum of thiophene studied by symmetry adapted cluster con_guration interaction method. Chem. Phys, 114, (2001), 842-850. https://doi.org/10.1063/1.1332118.
Susanne Salzmann, Martin Kleinschmidt, Jorg Tatchen, Rainer Weinkauf and Christel M. Marian. Excited states of thiophene: ring opening as deactivation mechanism. Phys. Chem. Chem. Phys, 10, (2008), 380-392):https://doi.org/10.1039/B710380H
Culberson L. M, and Sanov A. Electronic states of thiophenyl and furanyl radicals and dissociation energy of thiophene via photoelectron imaging of negative ions. J. Chem. Phys, 134, (2011), 204306 doi:10.1063/1.3593275.
E.E. Rennie, D.M.P. Holland, D.A. Shaw, C.A.F. Johnson, J.E. Parker. A study of the valence shell spectroscopic and thermodynamic properties of
thiophene by photoabsorption and photoion spectroscopy. Chem. Phys, 62, (2002), 123-141. doi:10.1016/j.chemphys.2004.07.029.
Emma E. Rennie, Louise Cooper, Larisa G. Shpinkova, David M.P. Holland, David A. Shaw, Paul M. Mayer. Threshold photoelectron photoion coincidence spectroscopy sheds light on the dissociation of pyrrole and thiophene molecular ions. Int. J. Mass Spectrom, 290 , (2010), 142–144,. doi:10.1016/j.ijms.2009.12.002.
P. Tzallas, C. Kosmidis, P. Graham, K.W.D. Ledingham, T. McCanny, S.M. Hankin, R.P. Singhal, P.F. Taday, A.J. Langle. Coulomb explosion in aromatic molecules and their deuterated derivatives. J. Photochem. Photobiol. C, 332, (2018), 236-242. https://doi.org/10.1016/S0009-2614(00)01285-9.
P.J. Linstrom and W.G. Mallard, Eds., NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899, https://doi.org/10.18434/T4D303, (accessed June 29, 2023).
Upadhyaya, Hari P. Ground‐state dissociation pathways for the molecular cation of 2‐chlorothiophene: A time‐of‐flight mass spectrometry and computational study. RCM, 33, (2019), 1598–1612. https://doi.org/10.1002/rcm.8497.
Hanjo Lim, David G. Schultz, Eric A. Gislason, and Luke Hanley. Activation energies for the fragmentation of thiophene ions by surface induced dissociation. J. Phys. Chem. B, 102, (1998), 4573-4580. https://doi.org/10.1021/jp980342f.
Li-Xia Ling, Ri-Guang Zhang, Bao-Jun Wang, Ke-Chang Xie. Density functional theory study on the pyrolysis mechanism of thiophene in coal. J. Mol. Struct. THEOCHEM, 905, (2009), 8-12.https://doi.org/10.1016/j.theochem.2009.02.040
Richard D. Adams, O Sung Kwon, Joseph L. Perrin. J. Organomet. The effect of a vinyl substituent on the ring opening of a substituted tetrahydrothiophene at a triosmium center. Chem, 584, (1999), 223-229 https://doi.org/10.1016/S0022-328X(99)00143_6
Robert G. Hayes and Wolfgang Eberhardt. Electron-ion coincidences studies of the fragmentation of thiophene and of tetrahydrothiophene upon core ionization. J. Chem. Phys, 94, (1991), 397 https://doi.org/10.1063/1.460730, 1991.
J.F. Lang and R.I. Masel. The adsorption of thiophene and tetrahydrothiophene on several faces of platinum. Surf. Sci, 183, (1987), 44-66 https://doi.org/10.1016/S0039{6028(87)80335{7
Nelson Y. Dzade, and Nora H. de Leeuw. Adsorption and desulfurization mechanism of thiophene on layered FeS(001), (011), and (111) surfaces: A dispersion-corrected Density Functional Theory study. J. Phys. Chem. C, 122, (2018), 359-370 https://doi.org/10.1021/acs.jpcc.7b08711, 2018.
Ivan V. Bodrikov, Alexander M. Kut in, Evgeniy Yu Titov, Dmitry Yu. Titov, Yury A. Kurskii, Ramis R. Gazizullin. Fragmentation of thiophene and 3-methyl-2-thiophenecarboxaldehyde by direct liquid phase low-voltage discharges. 1-6, Plasma Process Polym, 15. (2018), 1-6. https://doi.org/10.1002/ppap.201800094.
Shijun Meng, Wenping Li, Zhaofei Li, Hua Song. Non-thermal plasma assisted catalytic thiophene removal from fuel under different atmospheres. J. Clean. Prod, 369, (2022), 133282. https://doi.org/10.1016/j.jclepro.2022.133282.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 E. Prieto Zamudio, C. Cisneros Gudiño, I. Álvarez Torres, A. E. Guerrero Tapia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.