Enhancing detectivity in multi-barrier Ag2Se-PbS CQD photodetector through numerical optimization of design parameters
DOI:
https://doi.org/10.31349/RevMexFis.71.041304Keywords:
Intraband transition; MIR detection; silver chalcogenide CQDAbstract
Colloidal quantum dots (CQDs) with variable narrow bandgaps have emerged as powerful competitors to epitaxially grown semiconductors in the domain of infrared light transitions. This class of materials holds great promise for the development of next-generation optoelectronic devices, especially photodetectors. In recent developments, the use of silver chalcogenide CQDs has extended into biomedical applications of quantum dots. This expansion is attributed to their advantageous properties, such as low toxicity and tunable intraband transitions reaching the mid-infrared window. In this research, we investigate a structure for mid-infrared photon detection in the form of an intraband Ag2Se-PbS colloidal quantum dot (CQD) photodetector. Detectivity, a crucial performance parameter, is enhanced through numerical optimization by manipulating key design parameters such as Ag2Se CQD diameter, Ag2Se film doping density, and the number of PbS CQD layers in the barrier layer of the device's active region. This optimization process is conducted at various temperatures and biases. The results reveal that, under conditions of a 1 V bias and 80 K, the designed Ag2Se-PbS CQD infrared photodetector achieves peak detectivities. Specifically, observed peak detectivities of 13.13×109 Jones for Ag2Se CQDs with a diameter of 3.7 nm, and 11.01×109 Jones for a film doping density of 6.7×1018 cm-3 of Ag2Se CQDs.
References
X. Xue et al., High-operating-temperature mid-infrared photodetectors via quantum dot gradient homojunction. Light Sci. Appl., 12.1 (2023) 2, https://doi.org/10.1038/s41377-022-01014-0
Y. Wang et al., Mid-infrared single-pixel imaging at the singlephoton level. Nat. Commun., 14.1 (2023) 1073, https://doi.org/10.1038/s41467-023-36815-3
J. Fang et al., Mid-infrared single-photon 3D imaging. Light Sci. Appl., 12.1 (2023) 144, https://doi.org/10.1038/s41377-023-01179-2
H. Kumar and A. Kumar Pandey, GeSn-based multiplequantum-well photodetectors for mid-infrared sensing applications. IEEE Trans. Nanobiosci., 21.2 (2021) 175, https://doi.org/10.1109/TNB.2021.3136571
M. Hlavatsch and B. Mizaikoff, Advanced mid-infrared lightsources above and beyond lasers and their analytical utility. Anal. Sci., 38.9 (2022) 1125, https://doi.org/10.1007/s44211-022-00133-3
S. Edelstein et al., Waveguide-integrated mid-IR photodetector and all-optical modulator based on interlayer excitons absorption in a WS2/HfS2 heterostructure. J. Nanophotonics, 11.19 (2022) 4337, https://doi.org/10.1515/nanoph-2022-0203
Z. Liu et al., Mid-Infrared HgTe Colloidal Quantum Dots In-Situ Passivated by Iodide. Coatings, 12.7 (2022) 1033, https://doi.org/10.3390/coatings12071033
S. B. Hafiz et al., Silver selenide colloidal quantum dots for mid-wavelength infrared photodetection. ACS Appl. Nano Mater., 2.3 (2019) 1631, https://doi.org/10.1021/acsanm.9b00069
M. Liu et al., Colloidal quantum dot electronics. Nat. Electron., 4.8 (2021) 548, https://doi.org/10.1038/s41928-021-00632-7
Q. Guo et al., Efficient electrical detection of midinfrared graphene plasmons at room temperature. Nat. Mater., 17.11 (2018) 986, https://doi.org/10.1038/s41563-018-0157-7
J. Bullock et al., Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photonics, 12.10 (2018) 601, https://doi.org/10.1038/s41566-018-0239-8
H. J. C. P. Zhang and P. Guyot-Sionnest, Intraband Transition of HgTe Nanocrystals for Long-Wave Infrared Detection at 12 µm. ACS Nano, 17.8 (2023) 7530, https://doi.org/10.1021/acsnano.2c12636
S. Zhang, Y. Hu, and Q. Hao, Advances of sensitive infrared detectors with HgTe colloidal quantum dots. Coatings 10.8 (2020) 760, https://doi.org/10.3390/coatings10080760
B. Martinez et al., HgSe self-doped nanocrystals as a platform to investigate the effects of vanishing confinement. ACS Appl. Mater. Interfaces, 9.41 (2017) 36173, https://doi.org/10.1021/acsami.7b10665
E. Lhuillier and P. Guyot-Sionnest, Recent progresses in mid infrared nanocrystal optoelectronics. IEEE J. Sel. Top. Quantum Electron., 23.5 (2017) 1, https://doi.org/10.1109/JSTQE.2017.2690838
Z. Deng, K. S. Jeong, and P. Guyot-Sionnest, Colloidal quantum dots intraband photodetectors. ACS Nano, 8.11 (2014) 11707, https://doi.org/10.1021/nn505092a
M. Chen et al., Mid-infrared intraband photodetector via high carrier mobility HgSe colloidal quantum dots. ACS Nano, 16.7 (2022) 11027, https://doi.org/10.1021/acsnano.2c03631
Q. Hao et al., The Historical Development of Infrared Photodetection Based on Intraband Transitions. Materials, 16.4 (2023) 1562, https://doi.org/10.3390/ma16041562
H. Mølna˙s et al., Understanding the Growth Mechanisms of Ultrasmall Silver Selenide Quantum Dots for Short-Wave Infrared Detectors. Colloids Surf., A 674 (2023) 131946, https://doi.org/10.1016/j.colsurfa.2023.131946
M. Shorie et al., Graphitic carbon nitride QDs impregnated biocompatible agarose cartridge for removal of heavy metals from contaminated water samples. J. Hazard. Mater., 367 (2019) 629, https://doi.org/10.1016/j.jhazmat.2018.12.115
J. Kim, D. Choi, and K. Seob Jeongm, Self-doped colloidal semiconductor nanocrystals with intraband transitions in steady state. Chem. Commun., 54.61 (2018) 8435, https://doi.org/10.1039/C8CC02488J
M. M. A. Mahfuz et al., Colloidal Ag2Se intraband quantum dots. Chem. Commun. 59.72 (2023) 10722, https://doi.org/10.1039/D3CC02203J
S. B. Hafiz, M. M. Al Mahfuz and D.-K. Ko, Vertically stacked intraband quantum dot devices for mid-wavelength infrared photodetection. ACS Appl. Mater. Interfaces, 13.1 (2020) 937, https://doi.org/10.1021/acsami.0c19450
S. B. Hafiz et al., Midwavelength infrared p-n heterojunction diodes based on intraband colloidal quantum dots. ACS Appl. Mater. Interfaces, 13.41 (2021) 49043, https://doi.org/10.1021/acsami.1c14749
C. Livache et al., A colloidal quantum dot infrared photodetector and its use for intraband detection. Nat. Commun., 10.1 (2019) 2125, https://doi.org/10.1038/s41467-019-10170-8
O. B. Boyraz, Self-consistent rate equation modeling of bifunctional quantum cascade structures. MS thesis. Middle East Technical University (2023)
K. S. Qwah et al., Vertical hole transport through unipolar InGaN quantum wells and double heterostructures. Phys. Rev. Mater., 6.4 (2022) 044602, https://doi.org/10.1103/PhysRevMaterials.6.044602
M. Moradi and M. Moradi, The Effects of Temperature and Electric Field on the Electronic and Optical Properties of an InAs Quantum Dot Placed at the Center of a GaAs Nanowire. J. Surf. Invest., 16.6 (2022) 1237, https://doi.org/10.1134/S1027451022060428
A. Acharyya et al., Self-consistent solution of Schrödinger–Poisson equations in a reverse biased nano-scale p-n junction based on Si/Si0.4Ge0.6/Si quantum well. J. Comput. Electron., 14 (2015) 180, https://doi.org/10.1007/s10825-014-0637-1
M. A. Billaha, B. Roy, and N. Sahoo, Effect of external electric field on photo-responsivity of CdS/ZnSe multiple quantum well photodetector. Superlattices Microstruct. 157 (2021) 107003, https://doi.org/10.1016/j.spmi.2021.107003
M. A. Billaha, and M. K. Das, Performance analysis of AlGaAs/GaAs/InGaAs-based asymmetric long-wavelength QWIP. Appl. Phys. A, 125.7 (2019) 457, https://doi.org/10.1007/s00339-019-2750-2
K. Chen et al., Two-In-One: End-Emitting Blue LED and SelfPowered UV Photodetector based on Single Trapezoidal PIN GaN Microwire for Ambient Light UV Monitoring and Feedback. Small Methods, 7 (2023) 2300138, https://doi.org/10.1002/smtd.202300138
B. F. Levine, Quantum-well infrared photodetectors. J. Appl. Phys., 74.8 (1993) R1-R81, https://doi.org/10.1063/1.354252
E. M. I. N. E. Altin, M. Hostut, and Y. Ergun, Barrier lowering effect and dark current characteristics in asymmetric GaAs/AlGaAs multi-quantum well structure. Appl. Phys. A, 105 (2011) 833-839, https://doi.org/10.1007/s00339-011-6634-3
M. Khodaverdizadeh, and A. Asgari, Enhancing detectivity in mid-infrared photodetectors through structural parameter engineering in HgSe-HgTe colloidal quantum dots. J. Nanophotonics, 18.1 (2024) 016002-016002, https://doi.org/10.1117/1.JNP.18.016002
S. Wu et al., High-performance back-illuminated Ge0.92Sn0.08/Ge multiple-quantum-well photodetector on Si platform for SWIR detection. IEEE J. Sel. Top. Quantum Electron., 28.2 (2021) 1-9, https://doi.org/10.1109/JSTQE.2021.3078894
S. Madhusoodhanan et al., High-temperature analysis of GaNbased MQW photodetector for optical galvanic isolations in high-density integrated power modules. IEEE J. Emerging Sel. Top. Power Electron. 9.4 (2020) 3877, https://doi.org/10.1109/JESTPE.2020.2974788
V. González-Pedro et al., High performance PbS Quantum Dot Sensitized Solar Cells exceeding 4 % efficiency: the role of metal precursors in the electron injection and charge separation. Phys. Chem. Chem. Phys., 15.33 (2013) 13835-13843, https://doi.org/10.1039/C3CP51651B
O. Madelung, Semiconductors: data handbook, (Springer Science & Business Media, 2004)
M. Park et al., Mid-infrared intraband transition of metal excess colloidal Ag2Se nanocrystals. ACS Photonics, 5 (2018) 1907- 1911, https://doi.org/10.1021/acsphotonics.8b00291
S. B. Hafiz et al., Ligand engineering of mid-infrared Ag2Se colloidal quantum dots. Physica E, 124 (2020) 114223, https://doi.org/10.1016/j.physe.2020.114223
P. Guyot-Sionnest, J. C. Peterson and C. Melnychuk, Extracting bulk-like semiconductor parameters from the characterization of colloidal quantum dot film photoconductors. J. Phys. Chem. C, 126 (2022) 17196, https://doi.org/10.1021/acs.jpcc.2c05391
M. Chen and P. Guyot-Sionnest, Reversible electrochemistry of mercury chalcogenide colloidal quantum dot films. ACS Nano 11 (2017) 4165, https://doi.org/10.1021/acsnano.7b01014
G. Biswal et al., Bias-Tunable Quantum Well Infrared Photodetector. J. Nanomater., 14 (2024) 548, https://doi.org/10.3390/nano14060548
F. Xie et al., High-Performance InGaN/GaN Photodetectors With 30-Period Multiple Quantum Wells. IEEE Trans. Electron Devices, 70 (2023) 4685-4688, https://doi.org/10.1109/TED.2023.3294348
L. Guo et al., Multiple-quantum-well-induced unipolar carrier transport multiplication in AlGaN solar-blind ultraviolet photodiode. Photonics Res., 9 (2021) 1907-1915, https://doi.org/10.1364/PRJ.435937
N. Sfina, et al., A multi-color CdS/ZnSe quantum well photodetector for mid-and long-wavelength infrared detection. Mater. Sci. Semicond. Process. 19 (2014) 83-88, https://doi.org/10.1016/j.mssp.2013.12.008
M. A. Billaha, M. K. Das, and S. Kumar, Doping dependent frequency response of MQW infrared photodetector. Superlattices Microstruct. 104 (2017) 128-139, https://doi.org/10.1016/j.spmi.2017.02.018
S. D. Gunapala, and K. M. S. V. Bandara, Recent developments in quantum-well infrared photodetectors. Thin Films, 21 (1995) 113-237, https://doi.org/10.1016/S1079-4050(06)80005-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 M. Khodverdizadeh, A. Asgari

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.