Optical emission spectroscopy and modeling of DC CO2−N2−He mixture plasma
DOI:
https://doi.org/10.31349/RevMexFis.71.031501Keywords:
OES; glow discharge; Langmuir probe; electron energy distribution functionAbstract
In this study, a direct current carbon dioxide-helium-nitrogen CO2-N2-He mixture plasma was studied to evaluate its dependence on pressure. Optical emission spectroscopy (OES), and a Langmuir probe analysis were used to characterize the plasma. The ion number density and electron temperature were determined by a dual Langmuir probe; both values exhibited a slight dependence on the pressure. The species observed via OES exhibited a slight dependence on pressure, and the results were in good agreement with the behavior of the electron temperature and ion density measurements. The N2/N+2 , N/N2, and N/N+2 ratios as a function of pressure (obtained via OES measurements) were quantitatively correlated with the electron impact excitation and dissociation cross sections ratios. The carbon monoxide/oxygen CO/O2 ratio as a function of pressure (obtained via OES) indicated that more CO than O2 was produced, which corresponded with the most important process pertaining to CO2 splitting. This paper also presents the calculated electron transport coefficients, rate coefficients, electron energy distribution functions, and electron temperatures to support the trends observed during the experiment using BOLSIG+, a two-term Boltzmann solver. The rate coefficient due to excitation of the CO2, N2, and He obtained by BOLSIG+ are in good agreement with the present OES observation.
References
L. Chang-jun, X. Gen-hui, W. Timing, Non-thermal plasma approaches in CO2 utilization. Fuel Processing Technology, 58 (1999) 119, https://doi.org/10.1016/S0378-3820(98)00091-5
A. S. Chiper, W. Chen, O. Mejlholm, P. Dalgaard and E. Stamate, Atmospheric pressure plasma produced inside a closed package by a dielectric barrier discharge in Ar/CO2 for bacterial inactivation of biological samples. Plasma Sources Sci. Technol, 20 (2011) 025008, https://doi.org/10.1088/0963-0252/20/2/025008
I. Adamovich et al., The 2017 Plasma Roadmap: Low temperature plasma science and technology. J. Phys. D: Appl. Phys. 50 (2017) 32300, https://doi.org/10.1088/1361-6463/aa76f5
G. Horvath, J. D. Skalny and N. J. Mason FTIR study of decomposition of carbon dioxide in dc corona discharges. J. Phys. D: Appl. Phys. 41 (2008) 225207, https://doi.org/10.1088/0022-3727/41/22/225207
Zhou L. M., Xue B., U. Kogelschatz U. and Eliasson B. Nonequilibrium plasma reforming of greenhouse gases to synthesis gas. Energy & Fuels, 12 (1998) 1191, https://doi.org/10.1021/ef980044h
N. Lisi, U. Pasqual Laverdura, R. Chierchia, I. Luisetto, and S. Stendardo, A water cooled, high power, dielectric barrier discharge reactor for CO2 plasma dissociation and valorization studies. Sci Rep 13 (2023) 7394, https://doi.org/10.1038/s41598-023-33241-9
Y. Xu, Y. Gao, D. K. Xi, L. G. Dou, C. Zhang, B. W. Lu, T. Shao, Spark Discharge Plasma-Enabled CO2 Conversion Sustained by a Compact, Energy-Efficient, and LowCost Power Supply. Industrial & Engineering Chemistry Research 62 (2023) 15872, https://doi.org/10.1021/acs.iecr.3c02393
S. Renninger, J. Stein, M. Lambarth, and K. P. Birke, An optimized reactor for CO2 splitting in DC atmospheric pressure discharge. J. CO2 Util. 58 (2022) 101919, https://doi.org/10.1016/j.jcou.2022.101919
H. Martínez et al., Study of DC Ar-CO2 mixture plasma using optical emission spectroscopy and mass spectrometry techniques. Physics of Plasmas, 24 (2017) 043508, https://doi.org/10.1063/1.4979995
O. Flores, F. Castillo, H. Martínez, M. Villa, S. Villalobos and P. G. Reyes Characterization of direct current He-N2 mixture plasma using optical emission spectroscopy and mass spectrometry. Physics of Plasmas, 21 (2014) 053502, https://doi.org/10.1063/1.4875343
P. G. Reyes, C. Torres and H. Martínez, Electron temperature and ion density measurements in a glow discharge of an Ar-N2 mixture. Radiation Effects and Defects in Solids, 169 (2014) 285, https://doi.org/10.1080/10420150.2013.860975
B. M. Annaratone, G. F. Counsel, H. Kawano and J. E. Allen, On the use of double probes in RF discharges. Plasma Sources Sci. Technol. 1 (1992) 232, https://doi.org/10.1088/0963-0252/1/4/002
M. Janda, V. Martisovits M., Morvova, Z. Machala and K. Hensel, Monte Carlo simulations of electron dynamics in N2/CO2 mixtures. Eur. Phys. J. D, 45 (2007) 309, https://doi.org/10.1140/epjd/e2007-00254-x
C. Steinbruche, A new method for analyzing Langmuir probe data and the determination of ion densities and etch yields in an etching plasma. Journal of Vacuum Science and Technology A 8 (1990) 1663, https://doi.org/10.1116/1.576782
K. U. Riemann, The influence of collisions on the plasma sheath transition. Physics of Plasmas, 4 (1997) 4158, https://doi.org/10.1063/1.872536
J. D. Swift and M. J. R. M. Schwar, Electrical Probes for Plasma Diagnostics. Editorial: Iliffe Books; (American Elsevier, London, New York. 1970)
S. Ono and S. Teii, Negative ion formations and their effects on the electron temperature in CO2-N2-He mixture gas discharges. J. Phys. D: Appl. Phys., 17 (1984) 1999, https://doi.org/10.1088/0022-3727/17/10/011
R. W. B. Pearse and A. G. Gaydon, The identification of molecular spectra. Fourth edition. (Chapman and Hall. London, New York 1976). pp. 397
Y. Itikawa, Cross sections for electron collisions with carbon dioxide, Journal of phys. Chem. Ref. Data 31 (2002) 749, https://doi.org/10.1063/1.1481879
A. Laricchiuta, L.D. Pietanza, M. Capitelli, and G. Colonna Electron-CO excitation and ionization cross sections for plasma modeling. Plasma Phys. Control Fusion, 61 (2019) 014009, https://doi.org/10.1088/1361-6587/aae16b
Mi-Y Song, H. Cho, G.P. Karwasz, V. Kokoouline, and J. Tennyson Cross Sections for Electron Collisions with N2, N2∗ , and N2+ . J. Phys. Chem. Ref. Data 52 (2023) 023104, https://doi.org/10.1063/5.0150618
Y. Itikawa, Cross Sections for Electron Collisions with Nitrogen Molecules, J. Phys. Chem. Ref. Data 35 (2006) 31, https://doi.org/10.1063/1.1937426
G. M. Petrov et al., Numerical Modeling of a He-N2 Capillary Surface Wave Discharge at Atmospheric Pressure. Plasma Chemistry and Plasma Processing, 20 (2000) 183, https://doi.org/10.1023/A:1007065022725
M. Tsuji, T. Tanoue, K. Nakano and Y. Nishimura, Decomposition of CO2 into CO and O in a microwave-excited discharge flow of CO2/He or CO2/Ar mixtures. Chemistry Letters, 30 (2001) 22, https://doi.org/10.1246/cl.2001.22
V. Guerra et al., Time-Dependence of the electron energy distribution function in the nitrogen afterglow. IEEE Trans. Plasma Sci. 31 (2003) 542, https://doi.org/10.1109/TPS.2003.815485
J. Raud and M. Laan, Positive column of HF discharge in He/N2 mixture: excitation and ionization mechanisms. J. Phys. D: Appl. Phys. 42 (2009) 015205, https://doi.org/10.1088/0022-3727/42/1/015205
S. D. Rockwood, Elastic and inelastic cross sections for electron-Hg scattering from Hg transport data. Phys. Rev. A 8 (1972) 2348, https://doi.org/10.1103/PhysRevA.8.2348
S. De Benedictis, G. Dilecce and M. Simek, Vibrational excitation of N2+ (β, ν) in He-N2 pulsed RF discharges. J. Phys. B: at. Mol. Opt. 27 (1994) 615, https://doi.org/10.1088/0953-4075/27/3/025
J. A. Meyer, D. W. Setser and W. G. Clark, Rate constants for quenching of N2(A3Σ + u ) in active nitrogen. J. Phys. Chem. 76 (1972) 1, https://doi.org/10.1021/j100645a001
R. A. Young, G. Black and T. G. Slanger, Vacuum-ultraviolet photolysis of N2O. II. deactivation of N2(A3Σ + u *rpar; and N2(B3Πg). J. Chem. Phys. 50 (1969) 303, https://doi.org/10.1063/1.1670792
F. J. Mehr and M. A. Biondi, The dissociative recombination of molecular ions. Phys. Rev. 181 (1969) 264, https://doi.org/10.1103/PhysRev.181.264
J. T. Moseley, W. Aberth and J. R. Peterson, Two-body mutual neutralization rates of O+ 2 +O −, NO+ + O−, and Na+ O − obtained with merged beams. J. Geophys. Res. 77 (1972) 255, https://doi.org/10.1029/JA077i001p00255
W.J. Wiegand and W.L. Nighan Plasma chemistry of CO2-N2 discharges. Appl. Phys. Lett. 22 (1973) 583, https://doi.org/10.1063/1.1654516
P. K. Cheo, Effects of CO2, He, and N2 on the lifetimes of the 00◦ 1 and 10◦ 0 CO2 laser levels and on pulsed gain at 10.6 µ. Journal of Applied Physics. 38 (1967) 3563, https://doi.org/10.1063/1.1710173
A. N. Goyette, J. R. Peck, Y. Matsuda, L. W. Anderson, and J. E. Lawler Experimental comparison of rotational and gas kinetic temperatures in N2 and He-N2 discharges. J. Phys. D, (1998) 31 1556, https://doi.org/10.1088/0022-3727/31/13/009
V. I. Arkhipenko, A. A. Kirillov, L. V. Simonchik, and S. M. Zgirouski, Influence of the nitrogen-helium mixture ratio on parameters of a self-sustained normal dc atmospheric pressure glow discharge. Plasma Sources Sci. Technol. 14 (2005) 757, https://doi.org/10.1088/0963-0252/14/4/015
S. Ponduri, M. M. Becker, S. Welze, M. C. M. Van de Sanden, D. Loffhagen and R. Engeln Fluid modelling of CO2 dissociation in a dielectric barrier discharge. J. Appl. Phys. 119 (2016) 093301, https://doi.org/10.1063/1.4941530
T. Martens, Bogaerts A., Brok W.J.M. and Dijk J. V. The dominant role of impurities in the composition of high pressure noble gas plasmas. Appl. Phys. Lett. 92 (2008) 041504, https://doi.org/10.1063/1.2839613
T. G. Beuthe and J. S. Chang, Chemical kinetic modelling of non-equilibrium Ar-H2 thermal plasmas. Jpn. J. Appl. Phys. 36 (1997) 4997, https://doi.org/10.1143/JJAP.38.4576
G. J. M. Hagelaar and L. C. Pitchford, Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Source Sci. Technol. 14 (2005) 722, https://10.1088/0963-0252/14/4/011
Morgan database. Retrieved April 12, 2023. https://www.lxcat.laplace.univtlse.fr
A.V. Phelps and L.C. Pitchford Anisotropic scattering of electrons by N2 and its effect on electron transport. Phys. Rev. A 31 (1985) 2932, https://doi.org/10.1103/PhysRevA.31.2932
SIGLO database. Retrieved April 12, 2023. https://www.lxcat.laplace.univtlse.fr
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 F. Castillo, H. Martínez, O. Flores, C. Cisneros, P. G. Reyes, J. Vergara, C. Torres, A. Torres

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.