The effect of standoff distance on the electrochemical corrosion behavior of Zn-Al pseudo alloy coating by arc spray on low carbon steel in a seawater environment
DOI:
https://doi.org/10.31349/RevMexFis.71.031004Keywords:
Twin Wire Arc Spray; Zinc-Aluminum; Standoff Distance; Corrosion; Electrochemical Impedance Spectroscopy; Potentiodynamic Polarization.Abstract
An experimental study of Zn-Al pseudo alloy coatings prepared by twin dissimilar Zn and Al wires using the arc spray process at a different standoff distance, in order to protect low carbon steel substrates from marine corrosion has been undertaken in the present paper. The corrosion behavior of a Zn-Al pseudo alloy coating in a seawater solution collected from the Mediterranean Sea (Algerian coast), was evaluated by open circuit potential (OCP), potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) tests. The obtained results reveal that all prepared Zn-Al pseudo alloy coatings can protect the substrate, but the coating obtained at 100 mm standoff distance with 55.73% Zn and 44.27% Al presents a better performance in corrosion protection when exposed to seawater solution compared to Zn-Al pseudo alloy coatings prepared at 120 and 140 mm standoff distances, respectively. A strong correlation is also observed between corrossion data, porosity fraction, and hardness.
References
ASM International Handbook Committee: Properties and selection: Irons, Steel and High. Performance Alloys, ASM International (Eds.), volume 1, (1993), pp.105.
Zhenhua Chu, Wenxing Deng, Xingwei Zheng, Yuyun Zhou, Chunyue Zhang, Jingxiang Xu, Li Gao, Corrosion Mechanism of Plasma-Sprayed Fe-Based Amorphous Coatings with High Corrosion Resistance, J. Therm. Spray. Technol. 29 (2020) 1111, https://doi.org /10.1007/s11666-020-01030-9.
D.J. Varacalle, D.P. Zeek, V. Zanchuck, E. Sampson, K.W. Couch, D. Benson and G.S. Cox, Experimental Studies of Twin-Wire Electric Arc Sprayed Zinc/Aluminum Alloy Coatings, J. Therm. Spray Technol. 7 (1998) 513, https://doi.org/10.1361/105996398770350738.
M. Büteführ, Mater. Corros, Zinc-Aluminium-Coatings as Corrosion Protection for Steel, 58 (2007) 721, https://doi.org/10.1002/maco.200704058.
D. Dzhurinskiy, E. Maeva, E. Leshchinsky, R.G. Maev, Corrosion Protection of Light Alloys Using Low Pressure Cold Spray, J. Therm. Spray. Technol, 21 (2012) 304, https://doi.org/10.1007/s11666-011-9729-7.
S.J. Kim, Y.-B. Woo, Coating layer and corrosion protection characteristics in sea water with various thermal spray coating materials for STS304, Surf. Rev. Lett. 17 (2010) 299, https://doi.org/10.1142/S0218625X10013783
K.M. Moon, Observation of the corrosion characteristics of metalizing film in seawater solution, Int. J. Mod. Phys. B,.25 (2011) 4241, https://doi.org/10.1142/S0217979211066672.
S. Hong, Y. Wu, W. Gao, J. Zhang, Y. Qin, Corrosion Behavior of Arc-Sprayed Zn-Al Coating in the Presence of Sulfate-Reducing Bacteria in Seawater, J. Mater. Eng. Perform, 24 (2015) 4449, https://doi.org/10.1007/s11665-015-1729-1.
Liyuan Niu, Shiuan-Ho Chang, Yichang Su, Dong Han, Guangyu Li, A aluminum coating with chromium-free passivating film formed on AZ91D magnesium alloy, J. Alloy.Compd. 635 (2015)11, https://doi.org/10.1016/j.jallcom.2015.02.107.
S.Feliu Jr, Ma.J.BartoloméJ, A.González, V.López, S.Feliu, Passivating oxide film and growing characteristics of anodic coatings on aluminium alloys, Appl. Surf. Sci. 254 (2008) 2755, https://doi.org/10.1016/j.apsusc.2007.10.015.
Salar Fatoureh Bonabi, Fakhreddin Ashrafizadeh, Alireza Sanati, Saied Mehran Nahvi, Structure and Corrosion Behavior of Arc-Sprayed Zn-Al Coatings on Ductile Iron Substrate, J. Therm. Spray. Tech,.27 (2018) 524, https://doi.org/10.1007/s11666-018-0694-2.
Ole Øystein Knudsen, Håkon Matre, Cato Dørum, Martin Gagné, Experiences with Thermal Spray Zinc Duplex Coatings on Road Bridges Coatings, 9 (2019) 1, https://doi.org/10.3390/coatings9060371
Naveen Manhar Chavan, B Kiran, A Jyothirmayi, P Sudharshan Phani, G Sundararajan, J. Therm. Spray. Tech. 22, 463 (2013) https://doi.org/10.1007/s11666-013-9893-z
Z. Panossian, L. Mariaca, M. Morcillo, S. Floresd, J. Rocha, J.J. Peña, F. Herrera, F. Corvo, M. Sanchez, O.T. Rincon, G. Pridybailo, J. Simanca, Steel cathodic protection afforded by zinc, aluminium and zinc/aluminium alloy coatings in the atmosphere, Surf. Coatings Technol., 90 (2005) 244, https://doi.org/10.1016/j.surfcoat.2004.04.023
M. a. Baker, W. Gissler, S. Klose, M. Trampert, F. Weber, Morphologies and corrosion properties of PVD Zn–Al coatings Surf. Coatings. Technol., 125 (2000) 207, https://doi.org/10.1016/S0257-8972(99)00550-2.
B.L. Lin, X.Y. Lu, L. Li, Corrosion behaviors of arc spraying single and double layer coatings in simulated Dagang soil solution, Trans. Nonferrous Met. Soc. China 19 (2009) 1556, https://doi.org/10.1016/S1003-6326(09)60069-8.
LIN Bilan, LU Xinying, LI Long, Electrochemical Corrosion Behavior of Arc Sprayed Zn and Zn15Al Coatings in Simulated Salina Soil and Neutral Meadow Soil Solutions, Journal of Wuhan University of Technology Mater. Sci. Ed. 26 (2011) 1152, https://doi.org/10.1007/s11595-011-0380-4.
Han-Seung Lee, Jitendra Kumar Singh, Mohamed A. Ismail, Chinmoy Bhattacharya, Asiful H. Seikh, Nabeel Alharthi, Raja Rizwan Hussain, Corrosion mechanism and kinetics of Al-Zn coating deposited by arc thermal spraying process in saline solution at prolong exposureperiods, Scientific Reports., 9 (2019) 1, https://doi.org/10.1038/s41598-019-39943-3.
Hideki Katayama, Seiji Kuroda, Long-term atmospheric corrosion properties of thermally sprayed Zn, Al and Zn–Al coatings exposed in a coastal area Corrosion science., 76 (2013) 35, https://doi.org/10.1016/j.corsci.2013.05.021.
Satish Tailor, Ankur Modi, S. C. Modi, Synthesis, microstructural, corrosion and antimicrobial properties of Zn and Zn–Al coatings Surface Engineering., 35 (2019) 736, https://doi.org/10.1080/02670844.2019.1565680
Dongli Lv, Tao Zhang, and Feiyang Gong, Study on Properties of Cold-Sprayed Al-Zn Coating on S135 Drill Pipe Steel Advances in Materials Science and Engineering., 2020 (2020) 1, https://doi.org/10.1155/2020/9209465.
J.R. Davis,Introduction to thermal spray processing, .( Handbook of Thermal Spray Technology, 2004), pp. 3-13.
C.U. Hardwicke, Y.C. Lau, J. Therm. Spray Technol., Advances in Thermal Spray Coatings for GasTurbines and Energy Generation: A Review 22 (2013) 564, https://doi.org/10.1007/s11666-013-9904-0
D.R. Marantz, State of the Arc Spray Technology, Thermal Spray Research and Applications, T.F. Bernecki (Eds.), (ASM Iternational, 1992), pp. 113.
I. Hammad, Robotic Arc Spraying, Thermal Spray Research and Applications, T.F. Bernecki (Eds.), (ASM International, 1992), pp. 651.
G. Jandin, H. Liao, Z.Q. Feng, C. Coddet, Correlations between operating conditions, microstructure and mechanical properties of twin wire arc sprayed steel coatings Mater. Sci. Eng. A. 349 (2003) 298, https://doi.org/10.1016/S0921-5093(02)00767-0
I. Gedzevicius, a. V. Valiulis, J., Analysis of wire arc spraying process variables on coatings properties, Mater. Process. Technol.,175 (2006) 206, https://doi.org/10.1016/j.jmatprotec.2005.04.019
S.Djerourou, H.Lahmar, N.Bouhellal, Y.Mebdoua, Study of Twin Wire Arc Sprayed Zinc/Aluminum Coating on Low Carbon Steel Substrate: Application to corrosion Protection, Advanced Material Research., 685 (2013) 271, https://doi.org/10.4028/www.scientific.net/AMR.685.271.
Qiong JIANG, Qiang MIAO, Fei TONG, Yi XU, Bei-lei REN, Zhi-mei LIU, Zheng-jun YAOB, Electrochemical corrosion behavior of arc sprayed Al−Zn−Si−RE coatings on mild steel in 3.5% NaCl solution,Trans. Nonferrous Met. Soc. China. 24 (2014) 2713, https://doi.org/10.1016/S1003-6326(14)63402-6.
T. Ishizaki, Y. Masuda, K. Teshima, Composite film formed on magnesium alloy AZ31 by chemical conversion from molybdate/phosphate/fluorinate aqueous solution toward corrosion protection, Surf. Coatings Technol.217 (2013) 76, https://doi.org/10.1016/j.surfcoat.2012.11.076
J.M. Guilemany, J. Fernández, N. Espallargas, P.H. Suegama, a. V. Benedetti, Influence of spraying parameters on the electrochemical behaviour of HVOF thermally sprayed stainless steel coatings in 3.4% NaCl, Surf. Coatings Technol. 200 (2006) 3064, https://doi.org/10.1016/j.surfcoat.2005.02.116.
D. Yang, C. Liu, X. Liu, M. Qi, G. Lin, EIS diagnosis on the corrosion behavior of TiN coated NiTi surgical alloy, Curr. Appl. Phys. 5 (2005) 417, https://doi.org/10.1016/j.cap.2004.11.002.
C. Liu, Q. Bi, a. Matthews, EIS comparaison on corrosion performance of PVD TiN and CrN coated mild steel in 0.5 N NaCl aqueous solution, Corros. Sci. 43 (2001) 1953, https://doi.org/10.1016/S0010-938X(00)00188-8
C. Liu, Q. Bi, a. Leyland, a. Matthews, An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution:Part II. EIS interpretation of corrosion behaviourCorros.Sci. 45 (2003) 1257, https://doi.org/10.1016/S0010-938X(02)00214-7.
W.H. Mulder, J.H. Sluyters, T. Pajkossy, L. Nyikos, Tafel current at fractal electrodes Connection with admittance spectra J. Electroanal. Chem.,285 (1990) 103, https://doi.org/10.1016/0022-0728(90)87113-X
A. Yağan, N.Ö. Pekmez, A. Yildiz, Corrosion inhibition by poly(N-ethylaniline) coatings of mild steel in aqueous acidic solutions, Prog. Org. Coatings.,57 (2006) 314, https://doi.org/10.1016/j.porgcoat.2006.09.010.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 S. djerourou, Y. Mebdoua

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.