Spectroscopic characterization and high antibacterial activity of silver nanoparticles functionalized Alpaca fibers

Authors

  • H. Félix-Quintero Instituto de Física UNAM https://orcid.org/0000-0002-1733-5451
  • S. R. Jáuregui-Rosas Universidad Nacional de Trujillo
  • F. V. Samanamud-Moreno Universidad Nacional de Trujillo
  • V. Montero-Del Aguila Universidad Nacional de Trujillo
  • G. G. Zavaleta-Espejo Universidad Nacional de Trujillo
  • J. A. Saldaña-Jiménez Universidad Nacional de Trujillo
  • E. V. Mejía-Uriarte ICAT-UNAM
  • C. M. Yee-Rendon Universidad Autónoma de Sinaloa

DOI:

https://doi.org/10.31349/RevMexFis.71.061602

Keywords:

E Coli, SERS Effect, Alpaca, Silver Nanoparticle

Abstract

Using a simple chemical solution synthesis method, silver nanoparticle-functionalized alpaca fibers were prepared. Special attention was paid to three natural colors of alpaca fibers: white, brown, and black, for the study of absorbance, excitation, emission, Raman, and FTIR spectra. The alpaca fibers at higher silver concentrations exhibited an efficient SERS effect on the melanin molecule, with two bands centered at 1568 and 1336 cm⁻¹. The first band originated from the in-plane stretching of the aromatic rings, and the latter from the linear stretching of the C=C bonds within the rings. This molecule increases antibacterial capacity by enhancing the presence of Ag+ ions. The fibers treated with silver showed excellent antibacterial activity against Escherichia coli ATCC 25922.

Author Biography

H. Félix-Quintero, Instituto de Física UNAM

Departamento de estado sólido - Ayudante de Investigador

References

E. Pakdel, J. Wang, S. Kashi, L. Sun, X. Wang, Advances in photocatalyctic self-cleaning, superhydrophobic and electromagnetic interference shielding textile treatments, Adv. Colloid Interface Sci. 277 (2020) 102116. https://doi.org/10.1016/j.cis.2020.102116

F.M. Kelly, J.H. Johnston, Colored and functional silver nanoparticle-Wool fiber composites, ACS Appl. Mater. Interfaces 3 (2011) 1083-1092. https://doi.org/10.1021/am101224v

H.Y. Ki, J.H. Kim, S.C. Kwon, S.H. Jeong, A study on multifunctional wool textiles treated with nano-sized silver, J. Mater. Sci. 42 (2007) 8020-8024. https://doi.org/10.1007/s10853-007-1572-3

S. Mowafi, H. Kafafy, A. Arafa, K. Haggag, M. Rehan, Facile and environmental benign in situ synthesis of silver nanoparticles for multifunctionalization of wool fibers, Environ. Sci. Pollut. Res. 25 (2018) 29054-29069. https://doi.org/10.1007/s11356-018-2928-8

H. Barani, M.N. Boroumand, S. Rafiei, Application of silver nanoparticles as an antibacterial mordant in wool natural dyeing: Synthesis, antibacterial activity, and color characteristics, Fibers Polym. 18 (2017) 658-665. https://doi.org/10.1007/s12221-017-6473-8

Y.J.Tan, J. Li, Y. Gao, J. Li, S. Guo, M. Wang, A facile approach to fabricating silver-coated cotton fiber non-woven fabrics for ultrahigh electromagnetic interference shielding, Appl. Surf. Sci. 458 (2018) 236-244. https://doi.org/10.1016/j.apsusc.2018.07.107

A. Gao, H. Chen, A. Hou, K. Xie, Efficient antimicrobial silk composites using synergistic effects of violacein and silver nanoparticles, Mater. Sci. Eng. C Mater. Biol. Appl. 103 (2019) 109821. https://doi.org/10.1016/j.msec.2019.109821

C.J. Lupton, A. McColl, R.H. Stobart, Fiber characteristics of the Huacaya Alpaca, Small Ruminant Res. 64 (2006) 211-224. https://doi.org/10.1016/j.smallrumres.2005.04.023

R. Loudon, The Raman effect in crystals, Adv. Phys. 13 (1964) 423-482. https://doi.org/10.1080/00018736400101051

M. Rycenga, P.H.C. Camargo, W. Li, C.H. Moran, Y. Xia, Understanding the SERS Effects of single silver nanoparticles and their dimers, one at a time, J. Phys. Chem. Lett. 1 (2010) 696-703. https://doi.org/10.1021/jz900286a

Y. Chen, F. Ge, S. Guang, Z. Cai, Self-assembly of Ag nanoparticles on the woven cotton fabrics as mechanical flexible substrates for surface enhanced Raman scattering, J. Alloys Compd. 726 (2017) 484-489. https://doi.org/10.1016/j.jallcom.2017.07.315

D. Puchowicz, P. Giesz, M. Kozanecki, M. Cieślak, Surface-enhanced Raman spectroscopy (SERS) in cotton fabrics analysis, Talanta 195 (2019) 516-524. https://doi.org/10.1016/j.talanta.2018.11.059

D. Cheng, M. He, J. Ran, G. Cai, J. Wu, X. Wang, Depositing a flexible substrate of triangular silver nanoplates onto cotton fabrics for sensitive SERS detection, Sensor Actuat. B Chem. 270 (2018) 508-517. https://doi.org/10.1016/j.snb.2018.05.075

W.L. Cheun, The chemical structure of melanin, Pigment Cell. Res. 17 (2004) 423-424. https://doi.org/10.1111/j.1600-0749.2004.00165_1.x

Y. Liu, L. Hong, V.R. Kempf, K. Wakamatsu, S. Ito, and J.D. Simon, Ion-exchange and adsorption of Fe(III) by Sepia melanin, Pigment Cell. Res. 17 (2004) 262-269. https://doi.org/10.1111/j.1600-0749.2004.00140.x

M.E. El-Naggar, A.G. Hassabo, A.L. Mohamed, T.I. Shaheen, Surface modification of SiO2 coated ZnO nanoparticles for multifunctional cotton fabrics, J. Colloid Interface Sci. 498 (2017) 413-422. https://doi.org/10.1016/j.jcis.2017.03.080

S. Dutta, T. Chowdhury, A.K. Ghosh, Green synthesis of poly-L-lysine-coated sericin nanoparticles and their molecular size-dependent antibacterial activity, Colloid Surface B. 188 (2020) 110822. https://doi.org/10.1016/j.colsurfb.2020.110822

Z. Li, J. Meng, W. Wang, Z. Wang, M. Li, T. Chen, C.J. Liu, The room temperature electron reduction for the preparation of silver nanoparticles on cotton with high antimicrobial activity, Carbohydr. Polym. 161 (2017) 270-276. https://doi.org/10.1016/j.carbpol.2017.01.020

Z. Huang, H. Liu, X.K. Chen, A. Alajlan, D.I. McLean, H. Zeng, Raman spectroscopy of in vivo cutaneous melanin, J. Biomed. Opt. 9(6) (2004) 1198-1205. https://doi.org/10.1117/1.1805553

M. Essendoubi, M. Meunier, A. Scandolera, C. Gobinet, M. Manfait, C. Lambert, D. Auriol, R. Reynaud, O. Piot, Conformation changes in human hair keratin observed using confocal Raman spectroscopy after active ingredient application, Int. J. Cosmet. Sci. 41 (2019) 203-212. https://doi.org/10.1111/ics.12528

B.M. Auer, J.L. Skinner, IR and Raman spectra of liquid water: Theory and interpretation, J. Chem. Phys. 128 (2008) 224511. https://doi.org/10.1063/1.2925258

S. Sun, X. Zhang, S. Sun, L. Zhang, S. Shan, H. Zhu, Production of natural melanin by Auricularia auricula and study on its molecular structure, Food Chem. 190 (2016) 801-807. https://doi.org/10.1016/j.foodchem.2015.06.042

S. Balaji, R. Kumar, R. Sripriya, P. Kakkar, D. Ramesh, P.N.K. Reddy, P.K. Sehgal, Preparation and comparative characterization of keratin-chitosan and keratin-gelatin composite scaffolds for tissue engineering applications, Mater. Sci. Eng. C 32 (2012) 975-982. https://doi.org/10.1016/j.msec.2012.02.023

D. Paramelle, A. Sadovoy, S. Gorelik, P. Free, J. Hobley, D.G. Fernig, A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra, Analyst 139 (2014) 4855-4861. https://doi.org/10.1039/C4AN00978A

I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model from Gram-negative bacteria, J. Colloid Interface Sci. 275 (2004) 177-182. https://doi.org/10.1016/j.jcis.2004.02.012

WR. Li, XB. Xie, QS. Shi, HY. Zeng, YS. Ou-Yang, YB. Chen, Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli, Appl. Microbiol. Biot. 85 (2010) 1115-1122. https://doi.org/10.1007/s00253-009-2159-5

CN. Lok, CM. Ho, R. Chen, QY. He, WY. Yu, H. Sun, P. KH. Tam, JF. Chiu, CM. Che, Silver nanoparticles: partial oxidation and antibacterial activities, J. Biol. Inorg. Chem. 12 (2007) 527-534. https://doi.org/10.1007/s00775-007-0208-z

H. Félix-Quintero, E.V. Mejía-Uriarte, C. Falcony, D. Acosta, J. Hernández A. C. Flores J., E. Camarillo G., H. Murrieta S., Tunable White light emission through energy transfer processes between silver species in Ag-doped zinc phosphate glass, J. Lumin. 222 (2020) 117122. https://doi.org/10.1016/j.jlumin.2020.117122

S. Meng, E. Kaxiras, Theoretical models of eumelanin protomolecules and their optical properties, Biophys. J. 94 (2008) 2095-2105. https://doi.org/10.1529/biophysj.107.121087

Downloads

Published

2025-11-01

How to Cite

[1]
H. A. Félix Quintero, “Spectroscopic characterization and high antibacterial activity of silver nanoparticles functionalized Alpaca fibers”, Rev. Mex. Fís., vol. 71, no. 6 Nov-Dec, pp. 061602 1–, Nov. 2025.