Impact of atomic initial conditions on nonclassicality of the light in the ladder-type three-level Jaynes-Cummings model
DOI:
https://doi.org/10.31349/RevMexFis.71.051301Keywords:
Jaynes-Cummings model; photon number; Mandel parameter; atom-field interactionsAbstract
We explore the interaction between a three-level atom and a single-mode quantized cavity, known as the three-level ladder-type Jaynes-Cummings model. By employing the exact solution of the Schrödinger equation, we investigate how the initial conditions of the atom influence the occupation probabilities of the atomic energy levels, average photon number, and the nonclassicality of light, assessed through the Mandel Q(t) parameter and the Wigner function. Our findings are rigorously validated through comprehensive numerical simulations, ensuring robust and consistent outcomes.
References
E. Jaynes and F. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE 51 (1963) 89, https://doi.org/10.1109/PROC.1963.1664
S. Stenholm, Quantum theory of electromagnetic fields interacting with atoms and molecules, Phys. Rep. 6 (1973) 1, https://doi.org/10.1016/0370-1573(73)90011-2
B. W. Shore and P. L. Knight, The Jaynes-Cummings Model, J. Mod. Opt. 40 (1993) 1195, https://doi.org/10.1080/09500349314551321
J. Larson and T. K. Mavrogordatos, The Jaynes-Cummings Model and Its Descendants (Institute of Physics Publishing, 2022), https://api.semanticscholar.org/CorpusID:245226335
C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University Press, 2004), https://doi.org/10.1017/CBO9780511791239
A. B. Klimov and S. M. Chumakov, A Group-Theoretical Approach to Quantum Optics, pp. 83-112 (John Wiley & Sons, Ltd, 2009), https://doi.org/10.1002/9783527624003.ch5
G. S. Agarwal, Quantum Optics (Cambridge University Press, 2012), https://www.perlego.com/book/1693769/quantum-optics-pdf
P. Meystre, Quantum Optics: Taming the Quantum (Springer Cham, 2021), https://doi.org/10.1007/978-3-030-76183-7
A. M. Abdel-Hafez, A.-S. F. Obada, and M. M. A. Ahmad, Nlevel atom and (N-1) modes: an exactly solvable model with detuning and multiphotons, J. Phys. A 20 (1987) L359, https://doi.org/10.1088/0305-4470/20/6/004
V. Bužek, N-level Atom Interacting with Single-mode Radiation Field: An Exactly Solvable Model with Multiphoton Transitions and Intensity-dependent Coupling, J. Mod. Opt. 37 (1990) 1033, https://doi.org/10.1080/09500349014551091
C. Sukumar and B. Buck, Multi-phonon generalisation of the Jaynes-Cummings model, Phys. Lett. A 83 (1981) 211, https://doi.org/10.1016/0375-9601(81)90825-2
M. S. Abdalla, M. M. A. Ahmed, and A.-S. F. Obada, Multimode and multiphoton processes in a non-linear JaynesCummings model, Phys. A: Stat. Mech. Appl. 170 (1991) 393, https://doi.org/10.1016/0378-4371(91)90051-D
C. Saavedra et al., Jaynes-Cummings Model with Dissipation, In J. H. Eberly, L. Mandel, and E. Wolf, eds., Coherence and Quantum Optics VII (Springer US, Boston, MA, 1996) pp. 357-358, https://doi.org/10.1007/978-1-4757-9742-8_52
M. Scala et al., Microscopic derivation of the Jaynes- Cummings model with cavity losses, Phys. Rev. A 75 (2007) 013811, https://doi.org/10.1103/PhysRevA.75.013811
P. Alsing, D.-S. Guo, and H. J. Carmichael, Dynamic Stark effect for the Jaynes-Cummings system, Phys. Rev. A 45 (1992) 5135, https://doi.org/10.1103/PhysRevA.45.5135
S. M. Dutra, P. L. Knight, and H. Moya-Cessa, Large-scale fluctuations in the driven Jaynes-Cummings model, Phys. Rev. A 49 (1994) 1993, https://doi.org/10.1103/PhysRevA.49.1993
I. A. Bocanegra-Garay et al., Invariant approach to the driven Jaynes-Cummings model, SciPost Phys. 16 (2024) 007, https://doi.org/10.21468/SciPostPhys.16.1.007
L. Hernández-Sánchez et al., Formas de línea atómicas en modelos de tipo Jaynes-Cummings (Editorial Académica Española, 2023), p. 150
L. Hernández-Sánchez et al., Effects of classical drivings on the power broadening of atomic lineshapes, J. Opt. Soc. Am. B 41 (2024) C 68, https://doi.org/10.1364/JOSAB.522587
L. Hernández-Sánchez et al., Discriminando superposiciones de estados coherentes mediante formas de línea, Rev. Mex. Fis. 70 (2024) 011302 1-8, https://doi.org/10.31349/RevMexFis.70.011302
L. Hernández-Sánchez et al., Effects of Squeezing on the Power Broadening and Shifts of Micromaser Lineshapes, Photonics 11 (2024), https://doi.org/10.3390/photonics11040371
J. H. Eberly, N. B. Narozhny, and J. J. Sánchez-Mondragón, Periodic Spontaneous Collapse and Revival in a Simple Quantum Model, Phys. Rev. Lett. 44 (1980) 1323, https://doi.org/10.1103/PhysRevLett.44.1323
D. Meschede, H. Walther, and G. Müller, One-Atom Maser, Phys. Rev. Lett. 54 (1985) 551, https://doi.org/10.1103/PhysRevLett.54.551
S. Haroche and J. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons (Oxford University Press, Oxford, England, 2006), https://api.semanticscholar.org/CorpusID:209934492
M. Scully and M. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997), https://doi.org/10.1017/CBO9780511813993
D. A. Cardimona, M. P. Sharma, and M. A. Ortega, Effect of three-level atomic state coherence on collapse and revival dynamics, J. Phys. B: At. Mol. Opt. Phys. 22 (1989) 4029, https://doi.org/10.1088/0953-4075/22/24/010
M. Nath, S. Sen, and G. Gangopadhyay, Dynamics of cascade three-level system interacting with the classical and quantized field, Pramana-J. Phys. 61 (2003) 1089, https://doi.org/10.1007/BF02704404
N. Kumar and A. Chatterjee, Nonclassicality in a dispersive atom-cavity field interaction in the presence of an external driving field, Int. J. Mod. Phys. B 38 (2024) 2450415, https://doi.org/10.1142/S0217979223500476
H.-I. Yoo and J. Eberly, Dynamical theory of an atom with two or three levels interacting with quantized cavity fields, Physics Reports 118 (1985) 239, https://doi.org/10.1016/0370-1573(85)90015-8
L. Hernández-Sánchez, El modelo de Jaynes-Cummings para un átomo con tres niveles de energía, Tesis de maestría, Universidad Autónoma de Chiapas (UNACH) (2017), https://repositorio.unach.mx/jspui/handle/123456789/3206
J. Johansson, P. Nation, and F. Nori, QuTiP 2: A Python framework for the dynamics of open quantum systems, Computer Physics Communications 184 (2013) 1234, https://doi.org/10.1016/j.cpc.2012.11.019
L. Mandel, Sub-Poissonian photon statistics in resonance fluorescence, Opt. Lett. 4 (1979) 205, https://doi.org/10.1364/OL.4.000205
H. Moya-Cessa and F. Soto-Eguibar, Introduction To Quantum Optics (Rinton Press, 2011), https://www.researchgate.net/publication/259582579_INTRODUCTION_TO_QUANTUM_OPTICS
R. J. Glauber, Coherent and Incoherent States of the Radiation Field, Phys. Rev. 131 (1963) 2766, https://doi.org/10.1103/PhysRev.131.2766
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 L. Hernández-Sánchez, A. Flores-Rosas, S. Mendoza-Vásquez, I. Ramos-Prieto, F. Soto-Eguibar, H. M. Moya-Cessa

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.