Assessing the viability of Caesium-based double perovskite for technological applications
DOI:
https://doi.org/10.31349/RevMexFis.71.060503Keywords:
GGA and TB-mBJ, Halide double perovskite, Solar energy, SemiconductorsAbstract
This research aims to provide a comprehensive understanding of the structural, elastic, electronic, and optical properties of the Cs2PbBeBr6 halide double perovskite (HDP). In this study, all self-consistent field (SCF) calculations were performed using density functional theory (DFT) within the full-potential linear augmented plane-wave (FP-LAPW) method, as implemented in the Wien2k code. The Perdew-BurkeErnzerhof (PBE) generalized gradient approximation (GGA) and the Tran-Blaha modified Becke−Johnson (TB-mBJ) methods were employed to accurately describe the exchange-correlation interactions. Our findings indicate that Cs2PbBeBr6 is stable in a cubic structure (Fm-3m), supported by phase stability analysis, enthalpy of formation, tolerance factor, and elastic constants. The compound exhibits ductile behavior, as assessed by Poisson’s and Pugh’s ratios. The electronic band structure reveals an indirect band gap of 2.243 eV and 3.248 eV, calculated using the GGA and TB-mBJ methods, respectively. Optical spectra calculations were performed in the energy range of 0 to 13 eV for each of the dielectric functions, extinction coefficient, electron energy loss, refractive index, optical conductivity, reflectivity, and absorption coefficient. The optical properties of Cs2PbBeBr6 in the visible range are particularly significant, offering strong potential for applications such as solar energy harvesting. These characteristics make the compound a promising candidate for optoelectronic devices.
References
S. H. Shah et al., Comprehensive study of structural, elastic, electronic, optical, and thermoelectric properties of Rb2NaTlZ (Z = Cl, Br, and I) by DFT, Mater. Sci. Semicond. Process. 178 (2024) 108400, https://doi.org/10.1016/j.mssp.2024.108400
D. Abdullah et al., Probing the opto-electronic, phonon spectrum, and thermoelectric properties of lead-free fluoride perovskites A2GeSnF6 (A = K, Rb, Cs) for energy harvesting devices, Sci. Rep. 14 (2024) 12644, https://doi.org/10.1038/s41598-024-61210-3
H. Karwasara et al., A first principle investigations for electronic, optical and mechanical response of novel Ba2AgIO6 perovskite, Phys. Scr. 98 (2023) 075803, https://doi.org/10.1088/1402-4896/acdeb5
Z. Zhang et al., Potential Applications of Halide Double Perovskite Cs2AgInX6 (X = Cl, Br) in Flexible Optoelectronics: Unusual Effects of Uniaxial Strains, J. Phys. Chem. Lett. 10 (2019) 1120, https://doi.org/10.1021/acs.jpclett.9b00134
S. Al-Qaisi et al., A comprehensive first-principles study on the physical properties of Sr2ScBiO6 for low-cost energy technologies, Opt. Quantum Electron. 55 (2023) 1015, https://doi.org/10.1007/s11082-023-05282-x
M. A. Ali et al., Structural, electronic, magnetic and thermoelectric properties of Tl2NbX6 (X = Cl, Br) variant perovskites calculated via density functional theory, J. Comput. Chem. 44 (2023) 1875, https://doi.org/10.1002/jcc.27166
S. Thawarkar et al., Experimental and Theoretical Investigation of the Structural and Opto-electronic Properties of FeDoped Lead-Free Cs2AgBiCl6 Double Perovskite, Chem. Eur. J. 27 (2021) 7408, https://doi.org/10.1002/chem.202004902
R. Ullah et al., Effect of cation exchange on structural, electronic, magnetic and transport properties of Ba2MReO6 (M = In, Gd), J. Magn. Magn. Mater. 546 (2022) 168816, https://doi.org/10.1016/j.jmmm.2021.168816
Y. Soni et al., Transition metal-based halides double Cs2ZSbX6 (Z = Ag, Cu, and X = Cl, Br, I) perovskites: A mechanically stable and highly absorptive materials for photovoltaic devices, J. Solid State Chem. 314 (2022) 123420, https://doi.org/10.1016/j.jssc.2022.123420
A. Bhorde et al., Structural, Electronic, and Optical Properties of Lead-Free Halide Double Perovskite Rb2AgBiI6: A Combined Experimental and DFT Study, ES Mater. Manuf. 12 (2021) 43, https://doi.org/10.30919/esmm5f1042
T. Tang et al., First principle comparative study of transitional elements Co, Rh, Ir(III)-based double halide perovskites, Mater. Today Commun. 34 (2023) 105431, https://doi.org/10.1016/j.mtcomm.2023.105431
Y. Chrafih et al., Thermodynamic, optical, and morphological studies of the Cs2AgBiX6 double perovskites (X = Cl, Br, and I): Insights from DFT study, J. Alloys Compd. 960 (2023) 170650, https://doi.org/10.1016/j.jallcom.2023.170650
G. Nazir et al., Tuning of band gap by anions (Cl, Br, I) of double perovskites Rb2AgAsX6 for solar cells and thermoelectric applications, Phys. Scr. 98 (2023) 025811, https://doi.org/10.1088/1402-4896/acaec1
M. Z. Kazim et al., Physical properties of Ba2XIO6 (X = Ag, Na) double perovskite oxides for energy harvesting devices, Arab. J. Sci. Eng. 48 (2022) 779, https://doi.org/10.1007/s13369-022-06985-1
E. Haque et al., Electronic, phonon transport and thermoelectric properties of Cs2InAgCl6 from first-principles study, Comput. Condens. Matter 19 (2019) e00374, https://doi.org/10.1016/j.cocom.2019.e00374
T. Ishibe et al., Methodology of Thermoelectric Power Factor Enhancement by Controlling Nanowire Interface, ACS Appl. Mater. Interfaces. 10 (2018) 37709, https://doi.org/10.1021/acsami.8b13528
L. Peedikakkandy et al., Lead free, air stable perovskite derivative Cs2SnI6 as HTM in DSSCs employing TiO2 nanotubes as photoanode, Mater. Res. Bull. 108 (2018) 113, https://doi.org/10.1016/j.materresbull.2018.08.046
E. Haque et al., Origin of ultra-low lattice thermal conductivity in Cs2BiAgX6 (X = Cl, Br) and its impact on thermoelectric performance, J. Alloys Compd. 748 (2018) 63, https://doi.org/10.1016/j.jallcom.2018.03.137
M. A. Green et al., The emergence of perovskite solar cells, Nat. Photonics 8 (2014) 506, https://doi.org/10. 1038/nphoton.2014.134
L. Zhou et al., Synthesis and Photocatalytic Application of Stable Lead-Free Cs2AgBiBr6 Perovskite Nanocrystals, Small. 14 (2018) 1703762, https://doi.org/10.1002/smll.201703762
S. A. Aldaghfag et al., Computational study of Cs2ScXBr6 (X=Ag, Tl) for renewable energy devices, Physica B. 646 (2022) 414277, https://doi.org/10.1016/j.physb.2022.414277
M. Caid et al., Comprehensive exploration of halide double perovskites Cs2B[2B9?]GeCl6 (B[2B9?]: Zn, Cd) for affordable energy technologies: a high-throughput investigation, Opt. Quantum Electron. 56 (2024) 980, https://doi.org/10.1007/s11082-024-06721-z
N. Shrivastav et al., Predicting photovoltaic efficiency in Csbased perovskite solar cells: A comprehensive study integrating SCAPS simulation and machine learning models, Solid state Commun. 380 (2024) 115437, https://doi.org/10.1016/j.ssc.2024.115437
M. Grätzel, The light and shade of perovskite solar cells, Nat. Mater. 13 (2014) 838, https://doi.org/10.1038/nmat4065
A. T. Barrows et al., Efficient planar heterojunction mixedhalide perovskite solar cells deposited via spray-deposition, Energy Environ. Sci. 7 (2014) 2944, https://doi.org/10.1039/c4ee01546k
S. Al-Qaisi et al., First-principles investigations of Ba2NaIO6 double Perovskite semiconductor: Material for low-cost energy technologies, Mater. Chem. Phys. 275 (2022) 125237, https://doi.org/10.1016/j.matchemphys.2021.125237
A. K. Jena et al., Halide Perovskite Photovoltaics: Background, Status, and Future Prospects, Chem. Rev. 119 (2019) 3036, https://doi.org/10.1021/acs.chemrev.8b00539
M. Caid et al., A Density Functional Theory Exploration of Cs2B[2032?]B[2033?]I6 (B[2032?]B[2033?]: BeCa, BeSr, GeCd, GeBe, GeMg) Halide Double Perovskites for Optimal Solar Cell and Renewable Energy Applications, Phys. Status Solidi B. 261 (2024) 2300577, https://doi.org/10.1002/pssb.202300577
M. Caid et al., Structural, elastic, electronic, and optical properties of lead-free halide double perovskites Cs2 B’ B” Br6 (B’B”: BeMg, CdBe, CdGe, GeMg, GeZn, MgZn): Ab initio calculations, J. Mol. Model. 30 (2024) 59, https://doi.org/10.1007/s00894-024-05861-z
M. Caid et al., Exploring the versatile properties of Cs2B 0GeF6 (B0 : Sn, Pb) double perovskites: Insights into their mechanical stability, optoelectronic potential, and high thermoelectric performance, Physica B. 677 (2024) 415742, https://doi.org/10.1016/j.physb.2024.415742
M. Caid et al., Theoretical insight of stabilities and optoelectronic properties of double perovskite Cs2CuIrF6: Ab-initio calculations, J. Mol. Model. 29 (2023) 178, https://doi.org/10.1007/s00894-023-05588-3
M. Caid et al., DFT calculations on physical properties of the lead-free halide-based double perovskite compound Cs2CdZnCl6, Solid State Commun. 369 (2023) 115216, https://doi.org/10.1016/j.ssc.2023.115216
D. Y. Hu et al., First-principles study on the structural, elastic, electronic and optical properties of lead-free double perovskites Cs2CuBiX6 (X: I, Br, Cl), Mater. Today Commun. 29 (2021) 102842, https://doi.org/10.1016/j.mtcomm.2021.102842
M. Saeed et al., Optoelectronic and elastic properties of metal halides double perovskites Cs2InBiX6 (X = F, Cl, Br, I), Chin. Opt. Lett. 19 (2021) 030004, https://doi.org/10.3788/col202119.030004
P. Blaha et al., Full-potential, linearized augmented plane wave programs for crystalline systems, Comput. Phys. Commun. 59 (1990) 399, https://doi.org/10.1016/0010-4655(90)90187-6
J. P. Perdew et al., Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865, https://doi.org/10.1103/physrevlett.77.3865
F. Tran et al., (2009) Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential, Phys. Rev. Lett. 102 (2009), https://doi.org/10.1103/physrevlett.102.226401
F. D. Murnaghan, The Compressibility of Media under Extreme Pressures, Proc. Natl. Acad. Sci. U.S.A. 30 (1944) 244, https://doi.org/10.1073/pnas.30.9.244
Z. Li et al., Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys, Chem. Mater. 28 (2015) 284, https://doi.org/10.1021/acs.chemmater.5b04107
S. A. Khandy et al., Analysing cation-modified magnetic perovskites A2SnFeO6 (A = Ca, Ba): a DFT study, RSC Adv. 11 (2021) 27499, https://doi.org/10.1039/d1ra03527d
M. Caid et al., First principles study of the structural, elastic, magneto-electronic and thermoelectric properties of double perovskite Ba2ZrFeO6 in ferrimagnetic phase, Comput. Condens. Matter. 37 (2023) e00847, https://doi.org/10.1016/j.cocom.2023.e00847
R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. A. 65 (1954) 349, https://doi.org/10.1088/0370-1298/65/5/307
M. Jamal et al., Elastic constants of cubic crystals, Comput. Mater. Sci. 95 (2014) 592, https://doi.org/10.1016/j.commatsci.2014.08.027
M. Born et al., Dynamical Theory of Crystal Lattices, Clarendon Press, (Oxford, 1954), https://doi.org/10.1119/1.1934059
D. G. Pettifor, Theoretical predictions of structure and related properties of intermetallics, Mater. Sci. Technol. 8 (1992) 345, https://doi.org/10.1179/mst.1992.8.4.345
W. Voigt, Ueber die Beziehung zwischen den beiden Elasticitatsconstanten isotroper K rper, Ann. Phys. 274 (1889) 573, https://doi.org/10.1002/andp.18892741206
A. Reuss, B. der Fließgrenze von M. auf Grund der P. für Einkristalle, Z. Angew. Math. Mech. 9 (1929) 49, https://doi.org/10.1002/zamm.19290090104
J. F. Nye et al., Physical Properties of Crystals: Their Representation by Tensors and Matrices, Phys. Today. 10 (1957) 26, https://doi.org/10.1063/1.3060200
H. Fu et al., Ab initio calculations of elastic constants and thermodynamic properties of NiAl under high pressures, Comput. Mater. Sci. 44 (2008) 774, https://doi.org/10.1016/j.commatsci.2008.05.026
M. Friák et al., Ab initio calculation of tensile strength in iron, Philos. Mag. 83 (2003) 3529, https://doi.org/10.1080/14786430310001605588
Y. Pan et al., Ab-initio investigation of structure and mechanical properties of PtAlTM ternary alloy, Vacuum. 151 (2018) 205, https://doi.org/10.1016/j.vacuum.2018. 02.027
L. Hao et al., Ab Initio Study of the Structural, Electronic, Magnetic, Mechanical and Thermodynamic Properties of Full-Heusler Mn2CoGa, J. Electron. Mater. 48 (2019) 6222, https://doi.org/10.1007/s11664-019-07417-x
S. F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45 (1954) 823, https://doi.org/10.1080/14786440808520496
I. E. Rabah et al., A Theoretical Analysis of Physical Properties and Half-Metallic Stability under Pressure Effect of the ScNiCrZ (Z=Ga, Al, In) Heusler Alloys, SPIN. 11 (2021) 2150007, https://doi.org/10.1142/s2010324721500077
M. Caid et al., Electronic structure of short-period ZnSe/ZnTe superlattices based on DFT calculations, Condens. Matter Phys. 25 (2022) 13701, https://doi.org/10.5488/cmp.25.13701
C. Ambrosch-Draxl et al., Linear optical properties of solids within the full-potential linearized augmented planewave method, Comput. Phys. Commun. 175 (2006) 1, https://doi.org/10.1016/j.cpc.2006.03.005
Y. Rached et al., Effects of stacking periodicity on the structural, electronic, optical and thermoelectric properties of GaSb/InSb superlattices, Mater. Sci. Semicond. Process. 156 (2023) 107297, https://doi.org/10.1016/j.mssp.2022.107297
H. Mancer et al., Probing the effect of different exchangecorrelation functionals on the optoelectronic features of chalcogenide compound Ag2O, Rev. Mex. Fis. 69 (2023) 011004 1, https://doi.org/10.31349/revmexfis.69.011004
M. Caid et al., Full potential study of the structural, electronic and optical properties of (InAs)m/(GaSb)n superlattices, Comput. Condens. Matter 21 (2019) e00394. https://doi.org/10.1016/j.cocom.2019.e00394
D. R. Penn, Wave-Number-Dependent Dielectric Function of Semiconductors, Phys. Rev. 128 (1962) 2093, https://doi.org/10.1103/physrev.128.2093
M. Caid et al., Investigation of structural, elastic, electronic, and optical properties of lead-free double perovskites Cs2XBeBr6 (X = Ge, Sn): a first-principles DFT study, J. Mol. Model. 30 (2024) 354, https://doi.org/10.1007/s00894-024-06158-x
S. Morsli et al., Electronic structure and optoelectronic behavior of MgPbP2 chalcopyrite, Comput. Condens. Matter. 27 (2021) e00550, https://doi.org/10.1016/j.cocom.2021.e00550
M. Caid et al., High-throughput study of the structural, electronic, and optical properties of short-period (BeSe)m/(ZnSe)n superlattices based on DFT calculations, Comput. Condens. Matter. 29 (2021) e00598, https://doi.org/10.1016/j.cocom.2021.e00598
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 H. Mansour, D. Rached

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
