Physical properties of two-dimensional and quasi-two-dimensional systems

Authors

  • J. D. Hernández Velázquez Tecnológico de Estudios Superiores de Ecatepec
  • A. Gama Goicochea Tecnologico de Estudios Superiores de Ecatepec

DOI:

https://doi.org/10.31349/RevMexFis.71.061702

Keywords:

line tension; topological phase transitions; scaling and criticality; quasi-two-dimensional systems; dissipative particle dynamics

Abstract

A short review of some recent works on the similarities and differences in the physics of two-dimensional (2D) and quasi-two-dimensional (Q2D) systems by mesoscale models is presented. Three different case studies are reported: (a) two immiscible liquids, (b) a low density, classic Coulomb gas, and (c) dense polymer melts; all of which are under highly confined, Q2D geometry. Among our leading results are the following: the line tension of Q2D systems displays the same scaling exponent as the strictly 2D case. The Q2D Coulomb gas undergoes a topological phase transition closely related to the 2D Kosterlitz-Thouless transition, although important differences arise. Lastly, a scaling law for polymer melts in Q2D is proposed and tested, showing that the structure of the melt goes through fractal transitions with increasing concentration. In addition to the novelty of the results reported here and to their agreement with established theories and experimental data, this work highlights the usefulness of Q2D models to test known and underexplored physical phenomena expected for strictly 2D systems, which are never truly achieved in nature.

References

L.P. Kadanoff, Statistical Physics: Statics, Dynamics and Renormalization, (WORLD SCIENTIFIC, 2000). https://doi.org/10.1142/4016

H. Zhang et al., Recent advances of two-dimensional materials in smart drug delivery nano-systems, Bioact. Mater. 5 (2020) 1071. https://doi.org/10.1016/j.bioactmat.2020.06.012

H. Huang, W. Feng and Y. Chen, Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications, Chem. Soc. Rev. 50 (2021) 11381. https://doi.org/10.1039/D0CS01138J

D. Tyagi et al., Recent advances in two-dimensional-materialbased sensing technology toward health and environmental monitoring applications, Nanoscale 12 (2020) 3535. https://doi.org/10.1039/C9NR10178K

H. Lin et al., Emerging Low-Dimensional Nanoagents for Bio-Microimaging, Adv. Funct. Mater. 30 (2020) 2003147. https://doi.org/10.1002/adfm.202003147

C. Liu et al., Two-dimensional materials for next-generation computing technologies, Nat. Nanotechnol. 15 (2020) 545. https://doi.org/10.1038/s41565-020-0724-3

M. E. Fisher, The theory of equilibrium critical phenomena, Rep. Prog. Phys. 31 (1968) 508. https://doi.org/10.1088/0034-4885/31/1/508

J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C Solid State 6 (1973) 1181. https://doi.org/10.1088/0022-3719/6/7/010

A. N. Semenov and A. Johner, Theoretical notes on dense polymers in two dimensions, Eur. Phys. J. E 12 (2003) 469. https://doi.org/10.1140/epje/e2004-00019-2

M. R. Eustaquio-Armenta, G.A. Mendez-Maldonado and M. González-Melchor, The line tension of two-dimensional ionic ´ fluids, J. Chem. Phys. 144 (2016) 134705. https://doi.org/10.1063/1.4944731

S. Toxvaerd, Computer simulation of melting in a twodimensional Lennard-Jones system, Phys. Rev. A (Coll Park) 24 (1981) 2735. https://doi.org/10.1103/PhysRevA.24.2735

J. P. Hansen, D. Levesque and J. J. Weis, Self-Diffusion in the Two-Dimensional, Classical Electron Gas, Phys. Rev. Lett. 43 (1979) 979. https://doi.org/10.1103/PhysRevLett.43.979

G. S. Dubey and G. Gumbs, Two-dimensional Coulomb systems in a uniform magnetic field, Phys. Lett. A 252 (1999) 67. https://doi.org/10.1016/S0375-9601(98)00919-0

Y. Feng et al., Superdiffusion of two-dimensional Yukawa liquids due to a perpendicular magnetic field, Phys. Rev. E 90 (2014) 013105. https://doi.org/10.1103/PhysRevE.90.013105

G. S. Dubey, G. Gumbs and V. Fessatidis, Dynamical properties of magnetized two-dimensional one-component plasma, Phys. Lett. A 382 (2018) 1374. https://doi.org/10.1016/j.physleta.2018.03.032

A. Yethiraj, Computer Simulation Study of Two-Dimensional Polymer Solutions, Macromolecules 36 (2003) 5854. https://doi.org/10.1021/ma025907r

P. Polanowski, J.K. Jeszka, A. Sikorski, Monte Carlo studies of two-dimensional polymer-solvent systems, J. Mol. Model. 23 (2017) 63. https://doi.org/10.1007/s00894-017-3216-0

N. Schulmann et al., Strictly two-dimensional selfavoiding walks: Density crossover scaling, Polym. Sci. Ser. C+ 55 (2013) 181. https://doi.org/10.1134/S1811238213070072

S. Thiel et al., Tunable Quasi-Two-Dimensional Electron Gases in Oxide Heterostructures, Science 313 (2006) 1942. https://doi.org/10.1126/science.1131091

T. Zhang et al., Engineering crystalline quasi-twodimensional polyaniline thin film with enhanced electrical and chemiresistive sensing performances, Nat. Commun. 10 (2019) 4225. https://doi.org/10.1038/s41467-019-11921-3

C. Klopp and A. Eremin, On Droplet Coalescence in QuasiTwo-Dimensional Fluids, Langmuir 36 (2020) 10615. https://doi.org/10.1021/acs.langmuir.0c02139

K. S. Novoselov et al., Electric field in atomically thin carbon films, Science 306 (2004) 666. https://doi.org/10.1126/science.1102896

P. J. Hoogerbrugge and J. M. V. A. Koelman, Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics, Europhys. Lett. 19 (1992) 155. https://doi.org/10.1209/0295-5075/19/3/001

B. Widom, Surface tension and molecular correlations near the critical point, J. Chem. Phys. 43 (1965) 3892. https://doi.org/10.1063/1.1696617

J. D. Hernández Velázquez and A. Gama Goicochea, Hyper scaling of the correlation length, interfacial tension, and specific heat in two-dimensional and quasi-two-dimensional liquids, J. Chem. Phys. 158 (2023) 234702. https://doi.org/10.1063/5.0147786

J. D. Hernández Velázquez, Z. Nussinov and A. Gama Goicochea, Self-diffusion and structure of a quasi two-dimensional, classical Coulomb gas under increasing magnetic field and temperature, Phys. Rev. Res. 5 (2023) 043223. https://doi.org/10.1103/PhysRevResearch.5.043223

J. D. Hernández Velázquez, S. J. Alas, E. Pérez and A. Gama Goicochea, Universal scaling of the osmotic pressure for dense, quasi-two-dimensionally confined polymer melts reveals transitions between fractal dimensions, J. Chem. Phys. 160 (2024) 084907. https://doi.org/10.1063/5.0185634

M.P. Allen and D.J. Tildesley, Computer Simulations of Liquids (Oxford University Press, New York, 1987)

P. Español and P. Warren, Statistical Mechanics of Dissipative Particle Dynamics, Europhys. Lett. 30 (1995) 191. https://doi.org/10.1209/0295-5075/30/4/001

R. D. Groot and P. B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, J. Chem. Phys. 107 (1997) 4423. https://doi.org/10.1063/1.474784

E. Mayoral, A. Gama Goicochea, Modeling the temperature dependent interfacial tension between organic solvents and water using dissipative particle dynamics, J. Chem. Phys. 138 (2013) 094703. https://doi.org/10.1063/1.4793742

R. D. Groot and K. L. Rabone, Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants, Biophys. J. 81 (2001) 725. https://doi.org/10.1016/S0006-3495(01)75737-2

G. S. Grest and K. Kremer, Molecular dynamics simulation for polymers in the presence of a heat bath, Phys. Rev. A (Coll Park) 33 (1986) 3628. https://doi.org/10.1103/PhysRevA.33.3628

J. Santos-Santos, R. Soto-Guzmán, J. D. Hernández Velázquez and A. Gama Goicochea, The importance of angular ´ bending of Gemini surfactants on their encapsulation efficiency, J. Mol. Liq. 381 (2023) 121797. https://doi.org/10.1016/j.molliq.2023.121797

Z. Wen et al., Effect of Gemini surfactant structure on water/oil interfacial properties: A dissipative particle dynamics study, Chem. Eng. Sci. 251 (2022) 117466. https://doi.org/10.1016/j.ces.2022.117466

M. D. Tomasini and M. Silvina Tomassone, Dissipative particle dynamics simulation of poly(ethylene oxide)-poly(ethyl ethylene) block copolymer properties for enhancement of cell membrane rupture under stress, Chem. Eng. Sci. 71 (2012) 400. https://doi.org/10.1016/j.ces.2011.10.061

Y. L. Yang, Y. J. Sheng and H. K. Tsao, Hybridization of lipids to monolayer and bilayer membranes of triblock copolymers, J. Colloid. Interface. Sci. 544 (2019) 53. https://doi.org/10.1016/j.jcis.2019.02.071

S. W. Hu, C. Y. Huang, H. K. Tsao and Y. J. Sheng, Hybrid membranes of lipids and diblock copolymers: From homogeneity to rafts to phase separation, Phys. Rev. E 99 (2019) 1. https://doi.org/10.1103/PhysRevE.99.012403

K. Hpone Myint et al., Encapsulation of nanoparticles during polymer micelle formation: A dissipative particle dynamics study, J. Phys. Chem. B 120 (2016) 11582. https://doi.org/10.1021/acs.jpcb.6b07324

J. D. Hernández Velázquez, S. Mejía-Rosales, A. Gama Goicochea, Nanorheology of poly- and monodispersed polymer brushes under oscillatory flow as models of epithelial cancerous and healthy cell brushes, Polymer (Guildf) 129 (2017) 44. https://doi.org/10.1016/j.polymer.2017.09.046

E. Mayoral, A. Gama Goicochea, Modeling of Branched Thickening Polymers under Poiseuille Flow Gives Clues as to How to Increase a Solvent’s Viscosity, J. Phys. Chem. B 125 (2021) 1692. https://doi.org/10.1021/acs.jpcb.0c11087

E. I. Barcelos et al., Controlling particle penetration and depletion at the wall using Dissipative Particle Dynamics, Comput. Phys. Commun. 258 (2021) 107618. https://doi.org/10.1016/j.cpc.2020.107618

J. D. Hernández Velázquez, G. Sánchez-Balderas, A. Gama Goicochea and E. Pérez, The effective interfacial tensions between pure liquids and rough solids: a coarse-grained simulation study, Phys. Chem. Chem. Phys. 25 (2023) 10325. https://doi.org/10.1039/D2CP04321A

A. Gama Goicochea and Z. Nussinov, Topological phase transition in a quasi-two-dimensional Coulomb gas, Phys. Rev. E 107 (2023) 014104. https://doi.org/10.1103/PhysRevE.107.014104

A. Gama Goicochea and E. Pérez, Scaling Law of the Disjoining Pressure Reveals 2D Structure of Polymeric Fluids, Macromol. Chem. Phys. 216 (2015) 1076. https://doi.org/10.1002/macp.201400623

A. Gama Goicochea, Adsorption and disjoining pressure isotherms of confined polymers using dissipative particle dynamics, Langmuir 23 (2007) 11656. https://doi.org/10.1021/la701791h

A. Gama Goicochea and F. Alarcón, Solvation force induced by short range, exact dissipative particle dynamics effective surfaces on a simple fluid and on polymer brushes, J. Chem. Phys. 134 (2011) 014703. https://doi.org/10.1063/1.3517869

J.N. Israelachvili, Intermolecular and Surface Forces, 3rd ed. (Elsevier academic press, 2011)

K. A. Terron-Mejía, R. López-Rendón and A. Gama Goicochea, Electrostatics in dissipative particle dynamics using Ewald sums with point charges, J. Phys. Condens. Mat. 28 (2016) 425101. https://doi.org/10.1088/0953-8984/28/42/425101

M. Carrillo-Tripp, H. Saint-Martin and I. Ortega-Blake, A comparative study of the hydration of Na+ and K+ with refined polarizable model potentials, J. Chem. Phys. 118 (2003) 7062. https://doi.org/10.1063/1.1559673; R.D. Groot, Electrostatic interactions in dissipative particle dynamicssimulation of polyelectrolytes and anionic surfactants, J. Chem. Phys. 118 (2003) 11265. https://doi.org/10.1063/1.1574800; M. González-Melchor, E. Mayoral, M. E. Velázquez and J. Alejandre, Electrostatic interactions in dissipative particle dynamics using the Ewald sums, J. Chem. Phys. 125 (2006) 224107. https://doi.org/10.1063/1.2400223

C. Ibergay, P. Malfreyt and D. J. Tildesley, Electrostatic interactions in dissipative particle dynamics: Toward a mesoscale modeling of the polyelectrolyte brushes, J. Chem. Theory. Comput. 5 (2009) 3245. https://doi.org/10.1021/ct900296s

I.-C. Yeh and M. L. Berkowitz, Ewald summation for systems with slab geometry, J. Chem. Phys. 111 (1999) 3155. https://doi.org/10.1063/1.479595

F. Alarcón, E. Pérez and A. Gama Goicochea, Dissipative particle dynamics simulations of weak polyelectrolyte adsorption on charged and neutral surfaces as a function of the degree of ionization, Soft Matter 9 (2013) 3777. https://doi.org/10.1039/c2sm27332b

C. Pastorino and A. Gama Goicochea, Dissipative Particle Dynamics: A Method to Simulate Soft Matter Systems in Equilibrium and Under Flow, in: Environmental Science and Engineering, Springer Berlin Heidelberg, 2015: pp. 51-79. https://doi.org/10.1007/978-3-319-11487-3 3

E. Mayoral, J. D. Hernández Velázquez and A. Gama Goicochea, The viscosity of polyelectrolyte solutions and its dependence on their persistence length, concentration and solvent quality, RSC Adv. 12 (2022) 35494. https://doi.org/10.1039/d2ra06990c

I. Vattulainen, M. Karttunen, G. Besold and J. M. Polson, Integration schemes for dissipative particle dynamics simulations: From softly interacting systems towards hybrid models, J. Chem. Phys. 116 (2002) 3967. https://doi.org/10.1063/1.1450554

M. E. Velázquez, A. Gama Goicochea, M. González-Melchor, M. Neria, J. Alejandre, Finite-size effects in dissipative particle dynamics simulations, J. Chem. Phys. 124 (2006) 084104. https://doi.org/10.1063/1.2166377

A. O. Stone, M. J. Lea, P. Fozooni and J. Frost, The melting temperature of a two-dimensional electron solid on helium in a magnetic field, J. Phys. Condens. Mat. 2 (1990) 485. https://doi.org/10.1088/0953-8984/2/2/023

Z. Hu et al., Evidence of the Berezinskii-KosterlitzThouless phase in a frustrated magnet, Nat. Commun. 11 (2020) 5631. https://doi.org/10.1038/s41467-020-19380-x

N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group (CRC Press, 2018). https://doi.org/10.1201/9780429493492

A. O. Parry and R. Evans, Finite-size-scaling derivation of the Widom critical-exponent relation for surface tension, Phys. Rev. A (Coll Park) 46 (1992) 5282. https://doi.org/10.1103/PhysRevA.46.5282

E. Mayoral and A. Gama Goicochea, Hyperscaling relationship between the interfacial tension of liquids and their correlation length near the critical point, Soft Matter 10 (2014) 9054. https://doi.org/10.1039/c4sm01981d

J. H. Irving and J. G. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics, J. Chem. Phys. 18 (1950) 817. https://doi.org/10.1063/1.1747782

A. Gama Goicochea, M. A. Balderas Altamirano, J. D. Hernández Velázquez and E. Pérez, The role of the dissipative and random forces in the calculation of the pressure of simple fluids with dissipative particle dynamics, Comput. Phys. Commun. 188 (2015) 76. https://doi.org/10.1016/j.cpc.2014.11.006

M. R. Moldover, Interfacial tension of fluids near critical points and two-scale-factor universality, Phys. Rev. A (Coll Park) 31 (1985) 1022. https://doi.org/10.1103/PhysRevA.31.1022

S. Klessinger and G. Münster, Numerical investigation of the interface tension in the three-dimensional Ising model, Nucl. Phys. B 386 (1992) 701. https://doi.org/10.1016/0550-3213(92)90634-N

J. A. C. Valdez et al., Influence of the temperature on the interfacial tension between organic solvent-hydrocarbon systems using Dissipative Particle Dynamics, Fluid Phase Equilib. 575 (2023) 113933. https://doi.org/10.1016/j. fluid.2023.113933.

K. Binder, Monte Carlo calculation of the surface tension for two- and three-dimensional lattice-gas models, Phys. Rev. A (Coll Park) 25 (1982) 1699. https://doi.org/10.1103/PhysRevA.25.1699

A. M. Ferrenberg and D. P. Landau, Critical behavior of the three-dimensional Ising model: A high-resolution Monte Carlo study, Phys. Rev. B 44 (1991) 5081. https://doi.org/10.1103/PhysRevB.44.5081

A. M. Ferrenberg, J. Xu and D. P. Landau, Pushing the limits of Monte Carlo simulations for the three-dimensional Ising model, Phys. Rev. E 97 (2018) 043301. https://doi.org/10.1103/PhysRevE.97.043301

A. R. Honerkamp-Smith et al., Line Tensions, Correlation Lengths, and Critical Exponents in Lipid Membranes Near Critical Points, Biophys. J. 95 (2008) 236. https://doi.org/10.1529/biophysj.107.128421

A. R. Honerkamp-Smith, S. L. Veatch and S. L. Keller, An introduction to critical points for biophysicists; observations of compositional heterogeneity in lipid membranes, BBABiomembranes 1788 (2009) 53. https://doi.org/10.1016/j.bbamem.2008.09.010

J. M. Pusterla, S. A. Cannas, E. Schneck and R. G. Oliveira, Purified myelin lipids display a critical mixing point at low surface pressure, BBA-Biomembranes 1864 (2022) 183874. https://doi.org/10.1016/j.bbamem.2022.183874

J. Clerouin, J.-P. Hansen and B. Piller, Two-dimensional classical electron gas in a periodic field: Delocalization and dielectric-plasma transition, Phys. Rev. A (Coll Park) 36 (1987) 2793. https://doi.org/10.1103/PhysRevA.36.2793

B. Savoie, A rigorous proof of the Bohr-van Leeuwen theorem in the semiclassical limit, Rev. Math. Phys. 27 (2015) 1550019. https://doi.org/10.1142/S0129055X15500191

G. S. Dubey and G. Gumbs, Melting and dynamics of twodimensional Coulomb systems in the presence of a magnetic field, Phys. Rev. B 56 (1997) 2957. https://doi.org/10.1103/PhysRevB.56.2957

G. Gumbs and G.S. Dubey, Effect of modulation and magnetic field on the properties of two-dimensional Coulomb systems, Phys. Rev. B 57 (1998) 3769. https://doi.org/10.1103/PhysRevB.57.3769

K. R. Vidal and S. D. Baalrud, Extended space and time correlations in strongly magnetized plasmas, Phys. Plasmas 28 (2021) 042103. https://doi.org/10.1063/5.0045078

P. Hartmann et al., Self-diffusion in two-dimensional quasimagnetized rotating dusty plasmas, Phys. Rev. E 99 (2019) 013203. https://doi.org/10.1103/PhysRevE.99.013203

D. Frenkel and B. Smit, Understanding Molecular Simulation, 2nd ed. (Academic Press, London, 2002)

D. Bohm, E. H. S. Burhop and H. S. W. Massey, The Use of Probes for Plasma Exploration in Strong Magnetic Fields, in: A. Guthrie, R.K. Wakerling (Eds.), The Characteristics of Electrical Discharges in Magnetic Fields, 1st ed., McGraw-Hill Book Company Inc., New York, 1949: pp. 13-66

J. Daligault, Practical model for the self-diffusion coefficient in Yukawa one-component plasmas, Phys. Rev. E 86 (2012) 047401. https://doi.org/10.1103/PhysRevE.86.047401

T. Ott, H. Lowen and M. Bonitz, Dynamics of two-dimensional ¨ one-component and binary Yukawa systems in a magnetic field, Phys. Rev. E 89 (2014) 013105. https://doi.org/10.1103/PhysRevE.89.013105

S. D. Baalrud and J. Daligault, Transport regimes spanning magnetization-coupling phase space, Phys. Rev. E 96 (2017) 043202. https://doi.org/10.1103/PhysRevE.96.043202

P. G. de Gennes, Scaling Concepts in Polymer Physics, 1st ed. (Cornell university press, 1979)

P. J. Flory, Principles of Polymer Chemistry, 1st ed. (Cornell university press, Ithaca, New York, 1953)

J. C. Le Guillou and J. Zinn-Justin, Critical Exponents for the n-Vector Model in Three Dimensions from Field Theory, Phys. Rev. Lett. 39 (1977) 95. https://doi.org/10.1103/PhysRevLett.39.95

J. des Cloizeaux, The Lagrangian theory of polymer solutions at intermediate concentrations, J. Phys. France 36 (1975) 281. https://doi.org/10.1051/jphys:01975003604028100

M. O. Gallyamov et al., Individual bottle brush molecules in dense 2D layers restoring high degree of extension after collapse-decollapse cycle: Directly measured scaling exponent, Eur. Phys. J. E 29 (2009) 73. https://doi.org/10.1140/epje/i2009-10451-5

X. Wang and V. J. Foltz, Chain conformation in twodimensional dense state, J. Chem. Phys. 121 (2004) 8158. https://doi.org/10.1063/1.1801331

H. Meyer et al., Static properties of polymer melts in two dimensions, J. Chem. Phys. 132 (2010) 184904. https://doi.org/10.1063/1.3429350

B. Duplantier, Exact critical exponents for two-dimensional dense polymers, J. Phys. A Math. Gen. 19 (1986) L1009. https://doi.org/10.1088/0305-4470/19/16/011

A. Cavallo, M. Müller and K. Binder, Unmixing of Polymer Blends Confined in Ultrathin Films: Crossover between Two-Dimensional and Three-Dimensional Behavior, J. Phys. Chem. B 109 (2005) 6544. https://doi.org/10.1021/jp0458506

Downloads

Published

2025-11-01

How to Cite

[1]
J. D. Hernández Velázquez and A. Gama Goicochea, “Physical properties of two-dimensional and quasi-two-dimensional systems”, Rev. Mex. Fís., vol. 71, no. 6 Nov-Dec, pp. 061702 1–, Nov. 2025.

Issue

Section

17 Thermodynamics and Statistical Physics