Structural and electrical characteristics of low doped polyacetylene composites

Authors

  • Y. Wu Hainan Vocational University of Science and Technology
  • W. Abbas Bahauddin Zakariya University
  • M. K. Okla King Saud University
  • Y. A. Bin Jardan King Saud University
  • J. Ahmad Bahauddin Zakariya University
  • A. Shakoor Bahauddin Zakariya University Multan
  • M. Imran University of Lahore
  • M. Irfan Bahauddin Zakariya University

DOI:

https://doi.org/10.31349/RevMexFis.71.041005

Keywords:

Polyacetylene; Ziegler-Natta catalyst; crystallinity; DC conductivity

Abstract

Polyacetylene was synthesized by using Ziegler-Natta catalyst with chemical polymerization method and doped it with 10% iodine and 10% bromine to prepared the composites. The samples were characterized by XRD, SEM and temperature dependent DC electrical conductivity. The XRD pattern of doped polyacetylene displayed that the crystallinity was improved. The SEM morphology of doped polyacetylene demonstrated that granularity was increased. The calculated electrical conductivity shows the low electric conductivity of pure polyacetylene but when we doped polyacetylene with iodine and bromine the electrical conductivity was improved. This study explored that the improvement in the electrical conductivity which may confirm the doped polyacetylene behave as semiconductor and can by helpful for the potential application of devices and related fields.

References

O. Ala, and Q. Fan, Applications of conducting polymers in electronic textiles. Research Journal of Textile and Apparel, 13 (2009) 51-68. https://doi.org/10.1108/RJTA-13-04-2009-B007

M. Ates, A review study of (bio) sensor systems based on conducting polymers. Materials Science and Engineering: C, 33 (2013) 1853, https://doi.org/10.1016/j.msec.2013.01.035

Y. Tomkiewicz et al., Solitons or inhomogeneous doping in As F 5-doped polyacetylene-EPR and dc conductivity evidence. Phys. Rev. B, 24 (1981) 4348, https://doi.org/10.1103/PhysRevB.24.4348

J. Sedláček, and H. Balcar, Substituted polyacetylenes prepared with Rh catalysts: from linear to network-type conjugated polymers. Polymer Reviews, 57 (2017) 31, https://doi.org/10.1080/15583724.2016.1144207

P. E. Gusakov, A. V. Andrianov, A. N. Aleshin, S. Matsushita, and K. Akagi, Electrical and optical properties of doped helical polyacetylene graphite films in terahertz frequency range. Synthetic metals, 162 (2012) 1846, https://doi.org/10.1016/j.synthmet.2012.08.004

Y. Cao, P. Smith, and A. J. Heeger, Mechanical and electrical properties of polyacetylene films oriented by tensile drawing. Polymer, 32 (1991) 1210, https://doi.org/10.1016/0032-3861(91)90223-6

T. K. Das, and S. Prusty, Review on conducting polymers and their applications. Polymer-plastics technology and engineering, 51 (2012) 1487, https://doi.org/10.1080/03602559.2012.710697

C. K. Chiang, The bromine doping of polyacetylene. Physica A: Statistical Mechanics and its Applications, 321 (2003) 139. https://doi.org/10.1016/S0378-4371(02)01754-5

E. K. Sichel, M. Knowles, M. Rubner, and Jr. Georger, J. Effect of dopant-molecule size on electrical conductivity of polyacetylene. Physical Review B, 25 (1982) 5574, https://doi.org/10.1103/PhysRevB.25.5574

C. K. Chiang et al., Conducting polymers: Halogen doped polyacetylene. The Journal of Chemical Physics, 69 (1978) 5098, https://doi.org/10.1063/1.436503

H. Shirakawa, The discovery of polyacetylene film–the dawning of an era of conducting polymers. Current Applied Physics, 1 (2001) 281, https://doi.org/10.1063/1.436503

H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH) x. Journal of the Chemical Society, Chemical Communications, 1 (1977) 578, https://doi.org/10.1016/S1567-1739(01)00052-9 https://doi.org/10.1039/C39770000578

A. J. Epstein, H. Rommelmann, R. Fernquist, H. W. Gibson, M. A. Druy, and T. Woerner, Morphology of polyacetylene and doped polyacetylene. Polymer, 23 (1982) 1211, https://doi.org/10.1016/0032-3861(82)90381-0

C. K. Chiang, A. J. Heeger, and A. G. MacDiarmid, Synthesis, structure, and electrical properties of doped polyacetylene. Berichte der Bunsengesellschaft für physikalische Chemie, 83 (1979) 407, https://doi.org/10.1002/bbpc.19790830421

M. Anderson et al., Displacement of polarons by vibrational modes in doped conjugated polymers. Physical Review Materials, 1 (2017) 055604, https://doi.org/10.1103/PhysRevMaterials.1.055604

E. K. Sichel, M. Knowles, M. Rubner, and Jr. Georger, J. Effect of dopant-molecule size on the electrical conductivity of polyacetylene. Physical Review B, 25 (1982) 5574. https://doi.org/10.1103/PhysRevB.25.5574

N. S. Murthy, L. W. Shacklette, and R. H. Baughman, Structure and staging in polyacetylene charge-transfer complexes. Solid state communications, 72 (1989) 267, https://doi.org/10.1016/0038-1098(89)90808-9

M. Rolland et al., SEM and castaing microprobe studies of undoped and doped polyacetylene films. Materials Research Bulletin, 16 (1981) 1045, https://doi.org/10.1016/0025-5408(81)90279-8

C. K. Chiang et al., Electrical conductivity in doped polyacetylene. Physical review letters, 39 (1977) 1098, https://doi.org/10.1103/PhysRevLett.39.1098

C. K. Chiang, Y. W. Park, A. J. Heeger, H. Shirakawa, J. E. Louis, and A. G. MacDiarmid, Conducting polymers: Halogen doped polyacetylene. The Journal of Chemical Physics, 69 (1978) 5098, https://doi.org/10.1063/1.436503

K. Ehinger, and S. Roth, Non-solitonic conductivity in polyacetylene. Philosophical Magazine B, 53 (1986) 301, https://doi.org/10.1080/01418638608244290

H. Naarmann, and N. Theophilou, New process for the production of metal-like, stable polyacetylene. Synthetic Metals, 22 (1987) 1, https://doi.org/10.1016/0379-6779(87)90564-9

G. Lieser, S. C. Schmid, and G. Wegner, Electrically conducting polymers: preparation and investigation of oxidized poly (acetylene) by EFTEM. Journal of Microscopy, 183 (1996) 53, https://doi.org/10.1046/j.1365-2818.1996.75440

K. Akagi, G. Piao, S. Kaneko, K. Sakamaki, H. Shirakawa, and M. Kyotani, Helical polyacetylene synthesized with a chiral nematic reaction field. Science, 282 (1998) 1683, https://doi.org/10.1126/science.282.5394.1683

B. S. Hudson, Polyacetylene: Myth and reality. Materials, 11 (2018) 242, https://doi.org/10.3390/ma11020242

T. Ito, H. Shirakawa, and S. Ikeda, Simultaneous polymerization and formation of polyacetylene film on the surface of concentrated soluble Ziegler-type catalyst solution. Journal of polymer science: polymer chemistry edition, 12 (1974) 11, https://doi.org/10.1002/pol.1974.170120102

D. C. Bott et al., Durham poly acetylene: preparation and properties of the unoriented material. Synthetic metals, 14 (1986) 245, https://doi.org/10.1016/0379-6779(86)90039

D. Phillips, William Lawrence Bragg (1890-1971). In Great solid-state physicists of the 20th century (pp. 40-128), World Scientific (2003)

A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, Solitons in conducting polymers. Reviews of Modern Physics, 60 (1988) 781, https://doi.org/10.1103/RevModPhys.60.781

M. Tokumoto et al., Exafs study of bromine-doped polyacetylene. Solid state communications, 48 (1983) 861, https://doi.org/10.1016/0038-1098(83)90134-5

A. L. Patterson, The Scherrer formula for X-ray particle size determination. Physical Review, 56 (1939) 978. https://doi.org/10.1103/PhysRev.56.978

C. Basavaraja, E. A. Jo, B. S. Kim, D. G. Kim, and D. S. Huh, Electrical conduction mechanism of polypyrrolealginate polymer films. Macromolecular Research, 18 (2010) 1037, https://link.springer.com/article/10.1007/s13233-010-1108-6

M. Irfan, A. Shakoor, A. Majid, N. Hassam, and N. Ahmed, Structural and Electronic Properties of PPy-DBSA/Zirconium Oxide Composites. Polymer Science, Series A, 61 (2019) 105, https://link.springer.com/article/10.1134/S0965545X19010048

M. Saeed, A. Shakoor, and E. Ahmad, Temperature dependent electrical conductivity of polyaniline/Y2O3 composites. Polymer Science Series A, 55 (2013) 549, https://link.springer.com/article/10.1134/s0965545x13080105

H. Kaneko, and T. Ishiguro, Electrical conductance in metallic phases of fully doped polyacetylene. Synthetic metals, 65 (1994) 141

D. C. Bott et al., Durham poly acetylene: preparation and properties of the unoriented material. Synthetic metals, 14 (1986) 245

M. Tokumoto et al., Exafs study of bromine-doped polyacetylene. Solid state communications, 48 (1983) 861

A. Matsushita, K. Akagi, T. S Liang, and H. Shirakawa, Effects of pressure on the electrical resistivity of iodine-doped polyacetylene. Synthetic metals, 101 (1999) 447

J. A. Butcher Jr, J. Q. Chambers, and R. M. Pagni, Anodic oxidation of uranocene. Evidence for new organouranium cations in solution. Journal of the American Chemical Society, 100 (1978) 1012

A. Shakoor et al., A comparative study of structural, thermal and electrical properties of undoped and doped with dodecylbenzenesulphonic acid polypyrrole. Polymer Science Series B, 53 (2011) 540

Downloads

Published

2025-07-01

How to Cite

[1]
Y. Wu, “Structural and electrical characteristics of low doped polyacetylene composites”, Rev. Mex. Fís., vol. 71, no. 4 Jul-Aug, pp. 041005 1–, Jul. 2025.