Interaction between (H2, CO2) and Cu5Zn8 to study the effect of catalytic properties using DFT

Authors

  • I. P. Zaragoza TecnNM-Tlalnepantla
  • J.-M. Martínez-Magadan Instituto Mexicano del Petróleo
  • M. A. Cortes-Jácome Instituto Mexicano del Petróleo
  • J. A. Toledo-Antonio Instituto Mexicano del Petróleo
  • M. Ballesteros-Olvera Instituto Mexicano del Petróleo

DOI:

https://doi.org/10.31349/RevMexFis.71.051001

Keywords:

DFT; Cu5 Zn8 ; Potential ; H2 ; CO2 ,

Abstract

The model of CuZn as a metal alloy is obtained from representative experimental data of the catalyst for the transformation of CO2 to methanol, the surface plane (111) selected from the unit cell detecting by the position of Zn and Cu exhibits interesting regions ("A","B"). From a fundamental point of view, the interaction allows us to study the participation of Zn and Cu followed by CO2 and H2 for different separation distances. The molecular interaction by the energy and optimization calculations obtained results that determine important aspects to explain bond length changes of the H H and O C O. Energy values identify potential areas for Zn or Cu where they exhibit attraction, repulsion, and the minimum, in molecules of H2 and CO2 . The interaction of the hydrogen molecule with the surface in both regions shows bond length changes with a dissociative effect that reaches 0.921 Å by the direct interaction of Zn and Cu. The CO2 interacting with Zn and Cu reaches a maximum elongation of 1,309 Å. The interaction with H2 followed by CO2 in the presence of the surface has physicochemical effects when increased to 3 hydrogen molecules showing the catalytic phenomenon. The calculations use a level of DFT theory with a GGA approximation and DNP base functions to describe the electronic and structural properties.

References

- Q. I. Roode-Gutzmer, D. Kaiser, M. Bertau, Renewable Methanol Synthesis, ChemBioEng Rev, 6 (2019) 209.

- J.G. Wu, M. Saito, M. Takeuchi, T. Watanabe, The Stability of Cu/ZnO-based Catalysts in Methanol Synthesis from a CO2-rich Feed and from a CO-rich Feed. Appl. Catal. A 218 (2001) 235.

- J. Gong, J. Liu, D. Yang, G. Guo, J. Fan, W. Huang, Cu–Zn Synergy for CO Hydrogenation to Ethanol and Methanol on CuZnO Catalysts, Catalysis Letters 152 (2022) 2101.

-X. Mei Liu, G. Q. Lu, Z. Yan, and J. Beltramini, Recent Advances in Catalysts for Methanol Synthesis via Hydrogenation of CO and CO2, Ind. Eng. Chem. Res. 42 (2003) 6518.

- F.C.F. Marcos, L. Lin, L. E. Betancourt, S. D. Senanayake , J. A. Rodriguez, J. M. Assaf, R. Giudici, E. M. Assaf , Insights into the methanol synthesis mechanism via CO2 hydrogenation over Cu-ZnO-ZrO2 catalysts: Effects of surfactant/Cu-Zn-Zr molar ratio,Journal of CO_2 Utilization, 41 (2020) 101215.

- F. Arena, G. Italiano, K. Barbera, S. Bordiga, G. Bonura, L. Spadaro , F. Frusteri, Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2, catalysts in the CO2 hydrogenation to CH3OH, Applied Catalysis A: General, 350 (2008) 16.

- J.D. Grunwaldt, In Situ Investigations of Structural Changes in Cu/ZnO Catalysts, M. Molenbroek, N.-Y. Topsøe, H . Topsøe, and B. S. Clausen, Journal of Catalysis, 194 (2000) 452.

- S. Kattel, P. J. Ramirez, J. G. Chen, J. A. Rodriguez, P. Liu, Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts, Science, 355 (2017) 1296 .

- F. Meng, Q. Zhang, G. Yang, R. Yang, Y. Yoneyama, N. Tsubaki, Structural and kinetical studies on the supercritical CO2 dried Cu/ZnO catalyst for low-temperature methanol synthesis, Chemical Engineering Journal, 295 (2016) 160.

- G. Shi, Q. Chen, Q. Zhang, W. Cai, Z. Li, S. Zhai, H. Yu, F. Tan, Y. Wang, Morphology effect of ZnO support on the performance of Cu toward methanol production from CO2 hydrogenation, Journal of Saudi Chemical Society, 23 (2019) 42.

- Wencai He1, Peng Chen1, Wentao Deng1, Zhongning Shi1,*, Bingliang Gao1, Xianwei Hu1, Junli Xu2, Zhaowen Wang1, Electrosynthesis of Cu5Zn8 Alloy in Zinc Oxide-urea/ 1-ethyl-3-methylimidazolium Fluoride System at 353 K, Int. J. Electrochem. Sci., 12 (2017) 1521 – 1534

X. Su, Y. Sun, L. Jin, L. Zhang, Y. Yang, P. Kerns, B. Liu, S. Li, and J. He, Hierarchically porous Cu/Zn bimetallic catalysts for highly selective CO2 electroreduction to liquid C2 products, Appl Catal, B 269 (2020) 118800, https://doi.org/10.1016/j.apcatb.2020.118800

- Lewars, E.G. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics. 2nd Edition, (Springer, New York. 2011), pp. 2-42 http://dx.doi.org/10.1007/978-90-481-3862-3

- O.Gourdon, D. Gout, D. J. Williams, T. Proffen, S. Hobbs, and G. J. Miller, Atomic distribution in the gamma-brass structural and theoretical study . Inorganic Chemistry, 46 (2007) 251, url{https://doi.org/10.1021/ic0616380}

- T. Fujitame, Enhancement of the Catalytic Performance and Active Site Clarification of Cu/ZnO Based Catalysts for Methanol Synthesis by CO2 Hydrogenation,J. Jpn. Petrol. Inst., 63(2) (2020) 43-51

- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett.,77 (1996) 3865.

- B. Delley,DMol 3 DFT studies: from molecules and molecular environments to surfaces and solids, Computational Materials Science, 17 (2000) 122.

- V.F. Degtyareva, O.Degtyareva, M.K. Sakharov, N.I. Novokhatskaya, P. Dera, H.K. Mao, R.J. Hemley, Stability of Hume-Rothery phases in Cu–Zn alloys at pressures up to 50 GPa, . Phys.: Condens. Matter 17 (2005) 7955, url{https://doi.org/10.1088/0953-8984/17/50/013}

- C.E. García-López, I.P.Zaragoza, B. Vargas-Arista, V. Estrella-Suarez, Molecular Structures of ZnO by Aggregates of Atoms and Interaction of Two Monolayers. EJETR 4, 10 (2019) 162–166. DOI:https://doi.org/10.24018/ejeng.2019.4.10.1605.

- J. H. Pacheco-Sánchez, F. J. Isidro-Ortega, I.P. Zaragoza, Catching CO2 pollutant gas through nanocomposite formed by chitosan with non-circular C16 carbon double ring: VAMP study, Rev. Mex. Fis. 69 (2023) 1.

- R. Singh, L. Wang, J. Huang, In-Situ Characterization Techniques for Mechanism Studies of CO2 Hydrogenation, ChemPlusChem, e202300511 (2024) 1-25, URL{https://doi.org/10.1002/cplu.202300511}

- Y. Wang, M. Dong, S. Li, B. Chen, H. Liu, B. Han, The superiority of Pd2+ in CO2 hydrogenation to formic acid, Chem. Sci., 15 (2024) 5525,url{https://doi.org/10.1039/d3sc06925g}

- J. Wang , H. Liu , T. Wang, Y. Xi, P. Sun , F. Li, Boosting CO2 Hydrogenation to Methanol via Cu-Zn Synergy over Highly dispersed Cu,Zn-codoped ZrO2 catalysts, Catalysis Today 410 (2023) 205, url{https://doi.org/10.1016/j.cattod.2022.05.034}

Downloads

Published

2025-09-01

How to Cite

[1]
I.-P. Zaragoza, J.-M. Martínez-Magadan, M. A. Cortes-Jácome, J. A. Toledo-Antonio, and M. Ballesteros-Olvera, “Interaction between (H2, CO2) and Cu5Zn8 to study the effect of catalytic properties using DFT”, Rev. Mex. Fís., vol. 71, no. 5 Sep-Oct, pp. 051001 1–, Sep. 2025.