A novel optical flow method based on a second-order non-linear differential equation

Authors

  • Rafael G. González- Acuña Huawei Technologies, Camera Lab

DOI:

https://doi.org/10.31349/RevMexFis.71.021301

Keywords:

Optical flow; second-order; algorithm

Abstract

A novel optical flow algorithm based on a second-order nonlinear differential equation is presented. This equation expresses the difference between two sequential images, and from its solution, the optical flow information between the images can be extracted. The new algorithm is compared with standard optical flow algorithms, as well as some of their recent generalizations. The comparisons are conducted using common tests applied in particle image velocimetry. The results show that the new algorithm outperforms classical algorithms in these particular tests.

References

R. G. Gonzalez-Acuña, H. A. Chaparro-Romo, and I. Meléndez-Montoya, Optics and Artificial Vision (IOP Publishing, 2021)

D. Shukla and E. Patel, Speed determination of moving vehicles using Lucas-Kanade algorithm, International Journal of Computer Applications Technology and Research 2 (2013) 32, https://doi.org/10.7753/ijcatr0201.1007

J. Guo et al., Vision-based measurement for rotational speed by improving Lucas-Kanade template tracking algorithm, Applied optics 55 (2016) 7186. https://doi.org/10.1364/AO.55.007186

W. Tong, Formulation of Lucas-Kanade digital image correlation algorithms for non-contact deformation measurements: a review, Strain 49 (2013) 313. https://doi.org/10.1111/str.12039

S. Shakya and S. Kumar, Characterising and predicting the movement of clouds using fractional-order optical flow, IET Image Processing 13 (2019) 1375. https://doi.org/10. 1049/iet-ipr.2018.6100

T. Brox, C. Bregler, and J. Malik, Large displacement optical flow, In 2009 IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2009) pp. 41-48. https://doi.org/10.1109/CVPR.2009.5206697

G. M. Quenot, J. Pakleza, and T. A. Kowalewski, Particle image ´ velocimetry with optical flow, Experiments in fluids 25 (1998) 177. https://doi.org/10.1007/s003480050222

T. Liu and L. Shen, Fluid flow and optical flow, Journal of Fluid Mechanics 614 (2008) 253. https://doi.org/10.1017/S0022112008003273

Y. Liu et al., A new methodology for pixel-quantitative precipitation nowcasting using a pyramid Lucas Kanade optical flow approach, Journal of Hydrology 529 (2015) 354. https://doi.org/10.1016/j.jhydrol.2015.07.042

B. Lucas, Generalized Image Matching by the Method of Differences, Ph.D. thesis, Carnegie-Mellon University (1984)

B. K. P. Horn and B. G. Schunck, Determining optical flow, Artificial intelligence 17 (1981) 185. https://doi.org/10.1016/0004-3702(81)90024-2

A. M. G. Pinto et al., Revisiting lucas-kanade and hornschunck, J. Comput. Eng. Inf 1 (2013) 23. https://doi.org/10.5963/JCEI0102001

S. Yao et al., Learning deep Lucas-Kanade Siamese network for visual tracking, IEEE Transactions on Image Processing 30 (2021) 4814, https://doi.org/10.1109/TIP.2021.3076272

P. Docherty et al., Regressive cross-correlation of pressure signals in the region of stenosis: Insights from particle image velocimetry experimentation, Biomedical Signal Processing and Control 32 (2017) 143, https://doi.org/10.1016/j.bspc.2016.09.025

P. Kumar, S. Kumar, and B. Raman, A fractional order variational model for the robust estimation of optical flow from image sequences, Optik-International Journal for Light and Electron Optics 127 (2016) 8710. https://doi.org/10.1016/j.ijleo.2016.05.118

D. Chen et al., Fractional-order variational optical flow model for motion estimation, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371 (2013) 20120148. https://doi.org/10.1098/rsta.2012.0148

R. G. Gonzalez-Acuña, A. Dávila, and J. C. Gutiérrez-Vega, Optical flow of non-integer order in particle image velocimetry techniques, Signal Processing 155 (2019) 317. https://doi.org/10.1016/j.sigpro.2018.10.006

Y. Lu et al., Optical flow detection based on enhanced fuzzy clustering with elastic grouping logic, In 4th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, 7283 (2009) 578, https://doi.org/10.1117/12.828727

M. Raffel et al., Particle image velocimetry: a practical guide (Springer, 2018)

R. Yegavian et al., Lucas-Kanade fluid trajectories for timeresolved PIV, Measurement science and Technology 27 (2016) 084004. https://doi.org/10.1088/0957-0233/27/8/084004

S. L. Happy and A. Routray, Fuzzy histogram of optical flow orientations for micro-expression recognition, IEEE Transactions on Affective Computing 10 (2019) 394, https://doi.org/10.1109/TAFFC.2017.2723386

W. Weng et al., Wavelet-based image denoising in (digital) particle image velocimetry, Signal Processing 81 (2001) 1503. https://doi.org/10.1016/S0165-1684(01)00047-0

R. J. Adrian and J. Westerweel, Particle image velocimetry, 30 (Cambridge University Press, 2011)

W. Hongwei et al., The Optical Flow Method Research of Particle Image Velocimetry, Procedia Engineering 99 (2015) 918 https://doi.org/10.1016/j.proeng.2014.12.622

A. J. Smits, Flow visualization: techniques and examples (World Scientific, 2012)

V. E. Tarasov, Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media (Springer Science & Business Media, 2011)

N. Benkhettou, A. M. B. da Cruz, and D. F. M. Torres, A fractional calculus on arbitrary time scales: fractional differentiation and fractional integration, Signal Processing 107 (2015) 230, https://doi.org/10.1016/j.sigpro.2014.05.026

K. Razminia, A. Razminia, and J. J. Trujilo, Analysis of radial composite systems based on fractal theory and fractional calculus, Signal Processing 107 (2015) 378. https://doi.org/10.1016/j.sigpro.2014.05.008

H. A. Jalab and R. W. Ibrahim, Fractional Alexander polynomials for image denoising, Signal Processing 107 (2015) 340. https://doi.org/10.1016/j.sigpro.2014.06.004

N. Sebaa et al., Application of fractional calculus to ultrasonic wave propagation in human cancellous bone, Signal Processing 86 (2006) 2668, https://doi.org/10.1016/j.sigpro.2006.02.015

D. Tian, D. Li, and Y. Zhang, Medical image segmentation based on fractional-order derivative, In 2015 Asia-Pacific Energy Equipment Engineering Research Conf. (Atlantis Press, 2015) https://doi.org/10.2991/ap3er-15.2015.107

J. Zhang and K. Chen, Variational image registration by a total fractional-order variation model, Journal of Computational Physics 293 (2015) 442, https://doi.org/10.1016/j.jcp.2015.02.021

Y.-H. Yuan, Q.-S. Sun, and H.-W. Ge, Fractional-order embedding canonical correlation analysis and its applications to multiview dimensionality reduction and recognition, Pattern Recognition 47 (2014) 1411, https://doi.org/10.1016/j.patcog.2013.09.009

I. Petras, Fractional-order nonlinear systems: modeling, analysis and simulation (Springer Science & Business Media, 2011)

R. Hilfer (ed.), Applications of Fractional Calculus in Physics (World Scientific, 2000)

B. Bonilla, A. A. Kilbas and J. J. Trujillo, Calculo fraccionario y ecuaciones diferenciales fraccionarias (Madrid, UNED, 2003)

A. Melbourne et al., Using fractional gradient information in non-rigid image registration: application to breast MRI, In Medical Imaging 2012: Image Processing, vol. 8314 (International Society for Optics and Photonics, 2012) p. 83141Z, https://doi.org/10.1117/12.911173

A. Ibeas et al., Vaccination controllers for SEIR epidemic models based on fractional order dynamics, Biomedical Signal Processing and Control 38 (2017) 136, https://doi.org/10.1016/j.bspc.2017.05.013

M. D. Ortigueira and J. A. T. Machado, Fractional calculus applications in signals and systems, Signal Processing 86 (10) (2006) 2503, https://doi.org/10.1016/j.sigpro.2006.02.001

O. Olarte and K. Barbe, Fractional models in electrical impedance spectroscopy data for glucose detection, Biomedical Signal Processing and Control 40 (2018) 180, https://doi.org/10.1016/j.bspc.2017.09.017

J. T. Machado, Fractional order describing functions, Signal Processing 107 (2015) 389, https://doi.org/10.1016/j.sigpro.2014.05.012

R. Magin et al., On the fractional signals and systems, Signal Processing 91 (2011) 350, https://doi.org/10.1016/j.sigpro.2010.08.003

J. T. Machado et al., Fractional order electromagnetics, Signal Processing 86 (2006) 2637, https://doi.org/10.1016/j.sigpro.2006.02.010

J.-B. Li, Gabor filter based optical image recognition using Fractional Power Polynomial model based common discriminant locality preserving projection with kernels, Optics and Lasers in Engineering 50 (2012) 1281, https://doi.org/10.1016/j.optlaseng.2012.03.007

X. Chen et al., Fractional low-order independent component analysis for face recognition robust to partial occlusion, In Biometrics and Security Technologies (ISBAST), 2014 International Symposium on (IEEE, 2014) pp. 1-5, https://doi.org/10.1109/ISBAST.2014.7013084

N. Paragios, Y. Chen, and O. Faugeras, Handbook of mathematical models in computer vision (Springer, 2010)

E. H. Adelson and J. R. Bergen, Spatiotemporal energy models for the perception of motion, J. Opt. Soc. Am. 2 (1985) 284, https://doi.org/10.1364/JOSAA.2.000284

Z. Tu, R. Poppe, and R. C. Veltkamp, Adaptive guided image filter for warping in variational optical flow computation, Signal Processing 127 (2016) 253, https://doi.org/10.1016/j.sigpro.2016.02.018

D. Fleet and A. D. Jepson, Computation of component image velocity from local phase information, Int. J. Comput. Vis. 5 (1990) 77, https://doi.org/10.1007/BF00056772

D. Fleet and Y. Weiss, Mathematical Models in Computer Vision: The Handbook, chap. Optical flow estimation, pp. 239- 258 (Springer, 2005)

Y. Mochizuki et al., Variational method for super-resolution optical flow, Signal Processing 91 (2011) 1535, https://doi.org/10.1016/j.sigpro.2010.11.010

J.-d. Kim and J. Kim, Effective nonlinear approach for optical flow estimation, Signal processing 81 (2001) 2249, https://doi.org/10.1016/S0165-1684(01)00103-7

D. D. Giusto and G. Vernazza, Optical flow calculation from feature space analysis through an automatic segmentation process, Signal Processing 16 (1989) 41, https://doi.org/10.1016/0165-1684(89)90112-6

B. K. P. Horn and E. J. Weldon, Direct methods for recovering motion, International Journal of Computer Vision 2 (1988) 51, https://doi.org/10.1007/BF00836281

I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Academic press, 1998)

B. D. Lucas and T. E. A. Kanade, An iterative image registration technique with an application to stereo vision, Proceedings of Imaging Understanding Workshop (1981) 121

B. Horn, Robot vision (MIT Press, 1986). 58. B. Horn, Y. Fang, and I. Masaki, Time to contact relative to a planar surface, In Proceedings of IEEE conference on Intelligent Vehicles Symposium (2007) pp. 68-74, https://doi.org/10.1109/IVS.2007.4290093

N. Papenberg et al., Highly Accurate Optic Flow Computation with Theoretically Justified Warping, International Journal of Computer Vision 67 (2006) 141, https://doi.org/10.1007/s11263-005-3960-y

Z. Tu et al., A combined post-filtering method to improve accuracy of variational optical flow estimation, Pattern Recognition 47 (2014) 1926, https://doi.org/10.1016/j.patcog.2013.11.026

E. Meinhardt-Llopis and J. Sánchez, Horn-schunck optical flow with a multi-scale strategy, Image Processing on line (2013)

S. Oron, A. Bar-Hille, and S. Avidan, Extended lucas-kanade tracking, In Computer Vision-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13 (Springer, 2014) pp. 142-156, https://doi.org/10.1007/978-3-319-10602-110

E. Antonakos et al., Feature-based lucas-kanade and active appearance models, IEEE Transactions on Image Processing 24 (2015) 2617, https://doi.org/10.1109/TIP.2015.2431445

A. Bruhn, J. Weickert, and C. Schn--rr, Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods, International journal of computer vision 61 (2005) 211, https://doi.org/10.1023/B:VISI.0000045324.43199.43

Downloads

Published

2025-03-01

How to Cite

[1]
R. G. González- Acuña, “A novel optical flow method based on a second-order non-linear differential equation”, Rev. Mex. Fís., vol. 71, no. 2 Mar-Apr, pp. 021301 1–, Mar. 2025.