Self-organized states of quasi-two-dimensional turbulence in an oceanic basin with topography

Authors

DOI:

https://doi.org/10.31349/RevMexFis.71.030603

Keywords:

Two-dimensional turbulence, Topography effects, Oceanic vortices

Abstract

The evolution of oceanic-scale, quasi-two-dimensional turbulent flows in a closed basin with topography in a rotating system is studied using a shallow-water model. The basin is nearly flat in the central region and has a sloping coastal topography adjacent to the lateral walls. Two problems are analysed for basins in the northern hemisphere (positive Coriolis parameter). The first problem is the slow decay of an initially disordered flow. The main results are (1) the formation of a steady, anticlockwise flow around the basin that follows the topographic contours and (2) the spontaneous generation of an anticyclonic vortex at the nearly flat central part of the domain. This ‘preferred’ configuration was repeatedly found for arbitrary initial conditions with zero circulation and different Reynolds numbers. The well-defined current around the basin is associated with the direction of propagation of topographic Rossby waves along the contours of constant depth. However, when the initial circulation is sufficiently negative, the resulting flow configuration tends to be anticyclonic over the whole domain, including the coastal regions with topography. The second problem is the evolution of an initial flow at rest that is continuously forced until reaching a quasi-stationary turbulent state. In the presence of random forcing (with no preferential direction in time or space), the flow always tends to the preferred configuration found for decaying flows. The results are discussed in light of recent oceanographic observations in different basins. The limitations of the idealised simulations are outlined, together with recommendations for future studies.

References

R. H. Kraichnan, Inertial ranges in two-dimensional turbulence, The Phys. Fluids 10 (1967) 1417, https://doi.org/10.1063/1.1762301

G. Boffetta and R. E. Ecke, Two-dimensional turbulence, Ann. Rev. Fluid Mech. 44 (2012) 427, https://doi.org/10.1146/annurev-fluid-120710-101240

H. J. H. Clercx and G. J. F. van Heijst, Two-dimensional Navier-Stokes turbulence in bounded domains, Appl. Mech. Rev. 62 (2009) 020802, https://doi.org/10.1115/1.3077489

S. D. Danilov and D. Gurarie, Quasi-two-dimensional turbulence, Physics-Uspekhi 43 (2000) 863, https://doi.org/10.1070/PU2000v043n09ABEH000782

G. J. F. van Heijst and H. J. H. Clercx, Studies on quasi-2D turbulence- the effect of boundaries, Fluid Dyn. Res. 41 (2009) 064002, https://doi.org/10.1088/0169-5983/41/6/064002

G. I. Taylor, Experiments with rotating fluids, Proc. R. Soc. Lond. A 100 (1921) 114, https://doi.org/10.1098/rspa.1921.0075

G. J. F. van Heijst and H. J. H. Clercx, Laboratory modeling of geophysical vortices, Annu. Rev. Fluid Mech. 41 (2009) 143, https://doi.org/10.1146/annurev.fluid.010908.165207

L. Zavala Sansón and G. van Heijst, Laboratory experiments on flows over bottom topography, Modeling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations, edited by T. von Larcher and P. D. Williams (Wiley, New York) (2014). https://doi.org/10.1002/9781118856024.ch7

R. Salmon, Lectures on Geophysical Fluid Dynamics (Oxford University Press, 1998)

F. P. Bretherton and D. B. Haidvogel, Two-dimensional turbulence above topography, J. Fluid Mech. 78 (1976) 129, https://doi.org/10.1017/S002211207600236X

W. J. Merryfield, P. F. Cummins, and G. Holloway, Equilibrium statistical mechanics of barotropic flow over finite topography, J. Phys. Oceanogr. 31 (2001) 1880, https://doi.org/10.1175/1520-0485(2001)031%3C1880:ESMOBF%3E2.0.CO;2

L. Zavala Sansón, A. González-Villanueva, and L. M. Flores, Evolution and decay of a rotating flow over random topography, J. Fluid Mech. 642 (2010) 159, https://doi.org/10.1017/S0022112009991777

M. Tenreiro et al., Experiments and simulations on selforganization of confined quasi-two-dimensional turbulent flows with discontinuous topography, Phys. Fluids 22 (2010) 02511, https://doi.org/10.1063/1.3313928

L. Zavala Sansón, A. C. B. Aguiar, and G. J. F. van Heijst, Horizontal and vertical motions of barotropic vortices over a submarine mountain, J. Fluid Mech. 695 (2012) 173, https://doi.org/10.1017/jfm.2012.9

P. F. Cummins and G. Holloway, On eddy-topographic stress representation, J. Phys. Oceanogr. 24 (1994) 700, https://doi.org/10.1175/1520-0485(1994)024%3C0700:OESR%3E2.0.CO;2

J. Wang and G. K. Vallis, Emergence of Fofonoff states in inviscid and viscous ocean circulation models, J. Mar. Res. 52 (1994) 83, https://elischolar.library.yale.edu/journalofmarineresearch/2089

A. Solodoch, A. L. Stewart, and J. C. McWilliams, Formation of anticyclones above topographic depressions, J. Phys. Oceanogr. 51 (2021) 207, https://doi.org/10.1175/JPO-D-20-0150.1

J. H. LaCasce, A. Palóczy, and M. Trodahl, Vortices over bathymetry, J. Fluid Mech. 979 (2024) A32, https://doi.org/10.1017/jfm.2023.1084

A. Roubicek, E. Chassignet, and A. Griffa, Topographic stress parameterization in a primitive equation ocean model: Impact on mid-latitude jet separation, In Flow-Topography, Proceedings of Aha Hliko’a Hawaiian Winter Workshop, University of Hawaii (1995) pp. 239-252

L. Zavala Sansón, Effects of mesoscale turbulence on the wind-driven circulation in a closed basin with topography, Geophys. Astrophys. Fluid Dyn. 116 (2022) 159, https://doi.org/10.1080/03091929.2022.2065271

G. Holloway, Representing topographic stress for largescale ocean models, J. Phys. Oceanogr. 22 (1992) 1033, https://doi.org/10.1175/1520-0485(1992)022%3C1033:RTSFLS%3E2.0.CO;2

G. Holloway, Observing global ocean topostrophy, J. Geophys. Res. Oceans 113 (2008) C7, https://doi.org/10.1029/2007JC004635

A. M. Vázquez De La Cerda et al., Bay of Campeche circulation: An update, Goephys. Monogr. AGU 161 (2005) 279, https://doi.org/10.1029/161GM20

L. Zavala Sansón, J. Sheinbaum, and P. Pérez-Brunius, Single particle statistics in the southern Gulf of Mexico, Geofís. Int. 57 (2018) 139

M. Trodahl et al., The regeneration of the Lofoten Vortex through vertical alignment, J. Phys. Oceanogr. 50 (2020) 2689, https://doi.org/10.1175/JPOD-20-0029.1

L. Zavala Sansón and G. J. F. van Heijst, Interaction of barotropic vortices with coastal topography: Laboratory experiments and numerical simulations, J. Phys. Oceanogr. 30 (2000) 2141, https://doi.org/10.1175/1520-0485(2000)030%3C2141:IOBVWC%3E2.0.CO;2

J. Pedlosky, Geophysical fluid dynamics (Springer Science & Business Media, 1987)

L. Zavala Sansón, Nonlinear and time-dependent equivalent barotropic flows, J. Fluid Mech. 871 (2019) 925, https://doi.org/10.1017/jfm.2019.354

R. Verzicco et al., Numerical and experimental study of the interaction between a vortex dipole and a circular cylinder, Exp. Fluids 18 (1995) 153, https://doi.org/10.1007/BF00230259

A. S. González Vera and L. Zavala Sansón, The evolution of a continuously forced shear flow in a closed rectangular domain, Phys. Fluids 27 (2015) 034106, https://doi.org/10.1063/1.4915300

R. K. Scott and D. G. Dritschel, The structure of zonal jets in geostrophic turbulence, J. Fluid Mech. 711 (2012) 576, https://doi.org/10.1017/jfm.2012.410

D. K. Lilly, Numerical simulation of two-dimensional turbulence, Phys. Fluids 12 (1969) II, https://doi.org/10.1063/1.1692444

L. Zavala Sansón and G. J. F. van Heijst, Ekman effects in a rotating flow over bottom topography, J. Fluid Mech. 471 (2002) 239, https://doi.org/10.1017/S0022112002002239

J. H. LaCasce and P. E. Isachsen, The linear models of the ACC, Progr. Oceanogr. 84 (2010) 139, https://doi.org/10.1016/j.pocean.2009.11.002

S. Maassen, H. Clercx, and G. van Heijst, Self-organization of quasi-two-dimensional turbulence in stratified fluids in square and circular containers, Phys. Fluids 14 (2002) 2150, https://doi.org/10.1063/1.1480263

G. Gutiérrez de Velasco and C. D. Winant, Seasonal patterns of wind stress and wind stress curl over the Gulf of Mexico, J. Geophys. Res. Oceans 101 (1996) 18127, https://doi.org/10.1029/96JC01442

Downloads

Published

2025-05-01

How to Cite

[1]
L. Zavala Sansón, “Self-organized states of quasi-two-dimensional turbulence in an oceanic basin with topography”, Rev. Mex. Fís., vol. 71, no. 3 May-Jun, pp. 030603 1–, May 2025.