Electrical conductivity behavior of various ionic liquids

Authors

  • J. Gómez-Santana Universidad Autónoma Metropolitana Unidad Iztapalapa
  • A. F. Estrada-Alexanders Universidad Autónoma Metropolitana Unidad Iztapalapa
  • I. Dávila-Ortega Universidad Autónoma Metropolitana Unidad Iztapalapa
  • P. Díaz-Leyva Universidad Autónoma Metropolitana Unidad Iztapalapa
  • R. Sánchez Universidad Autónoma Metropolitana Unidad Iztapalapa

DOI:

https://doi.org/10.31349/RevMexFis.71.041701

Keywords:

Ionic liquids, non-Arrhenius behavior, non-Arrhenius conductivity, conductivity of liquids

Abstract

The present work examines the experimental electrical conductivities as a function of temperature for a variety of ionic liquids near room temperature. Three analytic models are used to describe them, the simple Arrhenius equation, the Vogel-Tamman-Fulcher equation and a novel semi-empirical modified form based on precedents for electrolyte solutions. Patterns are determined that relate the model that best describes the experimental conductivity of a given ionic liquid and its specific chemical structure.

References

R. D. Rogers, and K. R. Seddon, Ionic Liquids–Solvents of the Future? Science 302 (2003) 792, https://doi.org/10.1126/science.1090313

H. Weingärtner, Understanding Ionic Liquids at the Molecular Level: Facts, Problems, and Controversies. Angew. Chem., Int. Ed. 47 (2008) 654, https://doi.org/10.1002/anie.200604951

H. Weingärtner et al., The Dielectric Response of RoomTemperature Ionic Liquids: Effect of Cation Variation. J. Phys. Chem. B 111 (2007) 4775, https://doi.org/10.1021/jp0671188

K. R. Seddon, Ionic Liquids for Clean Technology. J. Chem. Tech. Biotechnol. 68 (1997) 351, https://doi.org/10.1002/(SICI)1097-4660(199704)68:4h351::AID-JCTB613i3.0.CO;2-4

C. Wakai, A. Oleinikova, M. Ott, and H. Weingärtner, How Polar Are Ionic Liquids? Determination of the Static Dielectric Constant of anImidazolium-based Ionic Liquid by Microwave Dielectric Spectroscopy. J. Phys. Chem. B 109 (2005) 17028, https://doi.org/10.1021/jp053946+

M. Mizoshiri, T. Nagao, Y. Mizoguchi, and M. Yao, Dielectric permittivity of room temperature ionic liquids: A relation to the polar and nonpolar domain structures. J. Chem. Phys. 132 (2010) 164510, https://doi.org/10.1063/1.3419906

O. Martínez-Mora, et al., Imidazole-based ionic liquids as rheological modifiers of heavy crude oil: An experimental and theoretical study. AIP Advances 11 (2021) 035204, https://doi.org/10.1063/5.0037333

T. Welton, Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev. 99 (1999) 2071, https://doi.org/10.1021/cr980032t

R. D. Chirico, V. Diky, J. W. Magee, M. Frenkel, and K. N. Marsh, Thermodynamic and thermophysical properties of the reference ionic liquid: 1-Hexyl-3-methylimidazolium bis[(Trifluoromethyl)Sulfonyl]amide (Including Mixtures). part 2.critical evaluation and recommended property values (IUPAC Technical Report). Pure Appl. Chem. 81 (2009) 791, https://doi.org/10.1351/PACREP-08-09-22

M. Petrowsky, and R. Frech, Temperature Dependence of Ion Transport: The Compensated Arrhenius Equation. J. Phys. Chem. B 113 (2009) 5996, https://doi.org/10.1021/jp810095g

M. Petrowsky, and R. Frech, Temperature Dependence of Ion Transport: The Compensated Arrhenius Equation. J. Phys. Chem. B 113 (2009) 5996. https://doi.org/10.1021/jp810095g

G. S. Fulcher, Analysis of Recent Measurements of the Viscosity of Glasses. J. Am. Ceram. Soc. 8 (1925) 339, https://doi.org/10.1111/j.1151-2916.1925.tb16731.x

G. Tamann, W. Hesse, Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Z. Anorg. Allg. Chem. 156 (1926) 245, https://doi.org/10.1002/zaac.19261560121

M. L. Williams, R. F. Landel, and J. D. Ferry, The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquid. J. Am. Chem. Soc. 77 (1955) 3701, https://doi.org/10.1021/ja01619a008

J. T. Bendler, M. F. Schlesinger, Defect-diffusion models of relaxation. J. Mol. Liq. 36 (1987) 37, https://doi.org/10.1016/0167-7322(87)80029-6

J. J. Fontanella, M. C. Wintersgill, C. S. Coughlin, P. Mazaud, and S. G. Greenbaum, Application of the Bendler-Shlesinger generalization of the Vogel equation to ion-conducting polymers. J. Polym. Sci. B: Polym. Phys. 29 (1991) 747, https://doi.org/10.1002/polb.1991.090290613

S. R. Jarosik, A. Krajewski, A. Lewandowski, and P. Radzimski, Conductivity of ionic liquids in mixtures. J. Mol. Liq. 123 (2006) 43, https://doi.org/10.1016/j.molliq.2005.06.001

E. A. Arkhipova, A. S. Ivanov, K. I. Maslakov, S. V. Savilov, and V. V. Lunin, Effect of cation structure of tetraalkylammonium- and imidazolium-based ionic liquids on their conductivity. Electrochimica Acta 297 (2019) 842, https://doi.org/10.1016/j.electacta.2018.12.002

J. Vila, et al., Temperature dependence of the electrical conductivity in EMIM-based ionic liquids: Evidence of Vogel-Tamman-Fulcher behavior. Fluid Ph. Equilib. 242 (2006) 141, https://doi.org/10.1016/j.fluid.2006.01.022

M. Aniya, M. Ikeda, A Model for Non-Arrhenius Ionic Conductivity. Nanomaterials 9 (2019) 911, https://doi.org/10.3390/nano9060911

Y. Daruich, C. Magallanes, L. A. Giordan, E. Garis, and A. Catenaccio, Dependence of the permittivity of a binary mixture upon temperature. J. Mol. Liq. 76 (1998) 107, https://doi.org/10.1016/S0167-7322(98)00054-3

A. Catenaccio, C. Magallanes, A linear representation of permittivity versus temperature data for pure alcohols. Phys. Chem. Liq. 45 (2007) 25, https://doi.org/10.1080/00319100600941730

A. Catenaccio, A new representation of permittivity versus temperature for alkanols of the same chain length. Phys. Chem. Liq. 47 (2009) 335, https://doi.org/10.1080/00319100802620520

S. B. Aziz, Role of Dielectric Constant on Ion Transport: Reformulated Arrhenius Equation, Adv. Mater. Sci. Eng. 2016 (2016) 2527013, https://doi.org/10.1155/2016/2527013

J. Nilsson-Hallen´ et al., Ionic Liquids: A Simple Model to Predict Ion Conductivity Based on DFT Derived Physical Parameters, Front. Chem. 7 (2019) 126, https://doi.org/10.3389/fchem.2019.00126

M. E. Kandil and K. N. Marsh, Measurement of the Viscosity, Density, and Electrical Conductivity of 1- Hexyl3-methylimidazolium Bis(trifluorosulfonyl)imide at Temperatures between (288 and 433) K and Pressures below 50 MPa, J. Chem. Eng. Data 52 (2007) 2382, https://doi.org/10.1021/je7003484

M. Sha et al., Dynamical properties of a roomtemperature ionic liquid: Using moleculardynamics simulations to implement adynamic ion cage model, J. Chem. Phys. 151 (2019) 154502, https://doi.org/10.1063/1.5126231

H. Hunger, A. Stoppa, S. Schrödle, G. Hefter, and R. Buchner, Temperature Dependence of the Dielectric Properties and Dynamics of Ionic Liquids. Chem. Phys. Chem. 10 (2009) 723, https://doi.org/10.1002/cphc.200800483

J. Leys et al., Temperature dependence of the electrical conductivity of imidazoliumionic liquids, J. Chem. Phys. 128 (2008) 064509, https://doi.org/10.1063/1.2827462

T. Singh, A. Kumar, Static Dielectric Constant of Room Temperature Ionic Liquids: Internal Pressure and Cohesive Energy Density Approach. J. Phys. Chem. B 112 (2008) 12968, https://doi.org/10.1021/jp8059618

Downloads

Published

2025-07-01

How to Cite

[1]
J. Gómez-Santana, A. F. Estrada-Alexanders, I. Dávila-Ortega, P. Díaz-Leyva, and R. Sánchez, “Electrical conductivity behavior of various ionic liquids”, Rev. Mex. Fís., vol. 71, no. 4 Jul-Aug, pp. 041701 1–, Jul. 2025.

Issue

Section

17 Thermodynamics and Statistical Physics