Optical solitons and parameters stability of the coupled system in magneto-optical waveguides
DOI:
https://doi.org/10.31349/RevMexFis.71.051304Keywords:
Optical solitons; nonlinear Schrodinger equation; waveguide; parameters stabilityAbstract
In this paper, optical solitons propagation in magneto-optical waveguides which is modeled by a coupled nonlinear Schrödinger equation system. A series of wave propagation patterns are given, including solitary wave solutions, periodic solutions and singular solutions. In addition, the physical realization of the optical wave modes is carried out under certain parameter values. In particular, the parameters stability of these optical wave modes is obtained.
References
A. Chabchoub and R. H. J. Grimshaw, The Hydrodynamic Nonlinear Schrödinger Equation: Space and Time, Fluids1 (2016) 23, https://doi.org/10.3390/fluids1030023
F. Sun, Propagation of solitons in optical fibers with generalized Kudryashov’s refractive index, Results Phys. 28 (2021) 104644, https://doi.org/10.1016/j.rinp.2021.104644
M. Y.Wang et al., Dispersive solitons in magneto-optic waveguides with Kudryashov’s form of self-phase modulation, Optik 269 (2022) 169860, https://doi.org/10.1016/j.ijleo.2022.169860
M. Y. Tang and M. Y. Wang, The chirped wave propagation in modified cubic-quintic complex Ginzburg-Landau equation with parabolic law, Optik 275 (2023) 170547, https://doi.org/10.1016/j.ijleo.2023.170547
J. Ahmad, et al., Soliton solutions of fractional extended nonlinear Schrödinger equation arising in plasma physics and nonlin- ¨ ear optical fiber, Sci. Rep. 13 (2023) 10877, https://doi.org/10.1038/s41598-023-37757-y
X. Z. Xu, Exact solutions of coupled NLSE for the generalized Kudryashov’s equation in magneto-optic waveguides, J. Opt. 53 (2024) 3877, https://doi.org/10.1007/s12596-023-01594-z
S. F. Wang, Spatial optical soliton cluster solutions in strongly nonlocal nonlinear media, Chaos Solitons Fract. 182 (2024) 114815, https://doi.org/10.1016/j.chaos.2024.114815
X. H. Wu, Y. T. Gao, and X. Yu, On a Hirota equation in oceanic fluid mechanics: double-pole breather-to-soliton transitions, Chaos Solitons Fract. 183 (2024) 114874, https://doi.org/10.1016/j.chaos.2024.114874
S. Chandra et al., Degeneracy affected stability in ionospheric plasma waves, Pramana 98 (2023) 2, https://doi.org/10.1007/s12043-023-02687-x
A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion, Appl. Phys. Lett. 23 (1973) 142, https://doi.org/10.1063/1.1654836
X. Wang and J. Yang, Exact spatiotemporal soliton solutions to the generalized three-dimensional nonlinear Schrödinger equation in optical fiber communication, Adv. Difference Equ. 2015 (2015) 347, https://doi.org/10.1186/s13662-015-0683-4
N. Raza, et al., Optical solitons of space-time fractional FokasLenells equation with two versatile integration architectures, Adv. Difference Equ. 2020 (2020) 1, https://doi.org/10.1186/s13662-020-02973-7
S. Wang et al., Dynamic behavior of optical soliton interactions in optical communication systems, Chin. Phys. Lett. 39 (2022) 114202, https://doi.org/10.1088/0256-307X/39/11/114202
L. An, L. Ling, and X. Zhang, Inverse scattering transform for the integrable fractional derivative nonlinear Schrödinger equation, Phys. D: Nonlinear Phenom. 458 (2024) 133888, https://doi.org/10.1016/j.physd.2023.133888
Y. Li et al., The exact solutions for the nonlocal Kundu-NLS equation by the inverse scattering transform, Chaos Solitons Fract. 180 (2024) 114603, https://doi.org/10.1016/j.chaos.2024.114603
X. Sang et al., Soliton, breather and rogue wave solutions of the nonlinear Schrödinger equation via Darboux transformation on a time-space scale, Chaos Soliton Fract 184 (2024) 115052, https://doi.org/10.1016/j.chaos.2024.115052
C. Fan, L. Li, and F. Yu, Soliton solution, breather solution and rational wave solution for a generalized nonlinear Schrödinger equation with Darboux transformation, Sci. Rep. 13 (2023) 9406, https://doi.org/10.1038/s41598-023-36295-x
S. T. Rizvi et al., The interactions of dark, bright, parabolic optical solitons with solitary wave solutions for nonlinear Schrödinger-Poisson equation by Hirota method, Opt. Quant. Electron. 56 (2024) 1162, https://doi.org/10.1007/s11082-024-07008-z
R. J. Luo and G. Q. Zhou, Double-Pole Solution and SolitonAntisoliton Pair Solution of MNLSE/DNLSE Based upon Hirota Method, Wuhan Univ. J. Nat. Sci. 29 (2024) 430, https://doi.org/10.1051/wujns/2024295430
M. S. Ahmed, A. A. Zaghrout, and H. M. Ahmed, Solitons and other wave solutions for nonlinear Schrödinger equation with Kudryashov generalized nonlinearity using the improved modified extended tanh-function method, Opt. Quant. Electron. 55 (2023) 1231, https://doi.org/10.1007/s11082-023-05521-1
A. Farooq, M. I. Khan, and W. X. Ma, Exact solutions for the improved mKdv equation with conformable derivative by using the Jacobi elliptic function expansion method, Opt. Quant. Electron. 56 (2024) 542, https://doi.org/10.1007/s11082-023-06258-7
M. Savescu, et al., Optical solitons in magneto-optic waveguides with spatio-temporal dispersion, Frequenz 68 (2014) 445, https://doi.org/10.1515/freq-2013-0164
J. V. Moloney, Nonlinear optical materials, vol. 101, 1st ed. (Springer Science and Business Media, 2012), pp. 83-108. 24. M. Asma et al., A pen-picture of solitons and conservation laws in magneto-optic waveguides having quadratic-cubic law of nonlinear refractive index, Optik 223 (2020) 165330, https://doi.org/10.1016/j.ijleo.2020.165330
U. Younas and J. Ren, Investigation of exact soliton solutions in magneto-optic waveguides and its stability analysis, Results Phys. 21 (2021) 103816, https://doi.org/10.1016/j.rinp.2021.103816
E. M. Zayed et al., Solitons in magneto-optic waveguides with quadratic-cubic nonlinearity, Phys. Lett. A 384 (2020) 126456, https://doi.org/10.1016/j.physleta.2020.126456
A. H. Arnous, Optical solitons with Biswas-Milovic equation in magneto-optic waveguide having Kudryashov’s law of refractive index, Optik 247 (2021) 167987, https://doi.org/10.1016/j.ijleo.2021.167987
A. Biswas, Solitons in magneto-optic waveguides, Appl. Math. Comput. 153 (2004) 387, https://doi.org/10.1016/S0096-3003(03)00639-8
N. A. Kudryashov, A generalized model for description of propagation pulses in optical fiber, Optik. 189 (2019) 42, https://doi.org/10.1016/j.ijleo.2019.05.069
N. A. Kudryashov, Mathematical model of propagation pulse in optical fiber with power nonlinearities, Optik. 212 (2020) 164750, https://doi.org/10.1016/j.ijleo.2020.164750
N. A. Kudryashov, Optical solitons of the model with arbitrary refractive index, Optik 224 (2020) 165767, https://doi.org/10.1016/j.ijleo.2020.165767
E. M. Zayed, K. A. Gepreel, and M. E. Alngar, Addendum to Kudryashov’s method for finding solitons in magneto-optics waveguides to cubic-quartic NLSE with Kudryashov’s sextic power law of refractive index, Optik 230 (2021) 166311, https://doi.org/10.1016/j.ijleo.2021.166311
E. M. Zayed et al., Effects of high dispersion and generalized non-local laws on optical soliton perturbations in magneto-optic waveguides with sextic-power law refractive index, NODY. 112 (2024) 8507, https://doi.org/10.1007/s11071-024-09518-7
E. M. Zayed et al., Investigating the generalized Kudryashov’s equation in magneto-optic waveguide through the use of a couple integration techniques, J. Opt. (2024) 1, https://doi.org/10.1007/s12596-024-01857-3
K. K. Ahmed et al., Unveiling optical solitons and other solutions for fourth-order (2+1)-dimensional nonlinear Schrödinger equation by modified extended direct algebraic method, J. Opt. (2024) 1, https://doi.org/10.1007/s12596-024-01690-8
E. M. Zayed et al., Cubic-quartic optical solitons in magnetooptic waveguides for NLSE with Kudryashov’s law arbitrary refractive index and generalized non-local laws of nonlinearity, Optik 261 (2022) 169127, https://doi.org/10.1016/j.ijleo.2022.169127
C. S. Liu, Trial Equation Method to Nonlinear Evolution Equations with RankInhomogeneous: Mathematical Discussions and Its Applications, Commun. Theor. Phys. 45 (2006) 219, https://doi.org/10.1088/0253-6102/45/2/005
C. S. Liu, Trial equation method based on symmetry and applications to nonlinear equations arising in mathematical physics, Found Phys. 41 (2011) 793, https://doi.org/10.1007/s10701-010-9521-4
C. S. Liu, Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations, Commput. Phys. Commun. 181 (2010) 317, https://doi.org/10.1016/j.cpc.2009.10.006
C. S. Liu, The classification of travelling wave solutions and superposition of multi-solutions to Camassa-Holm equation with dispersion, Chin. Phys. 16 (2007) 1832, https://doi.org/10.1088/1009-1963/16/7/004
X. Wang and Y. Liu, All single travelling wave patterns to fractional Jimbo-Miwa equation and Zakharov-Kuznetsov equation, Pramana 92 (2019) 31, https://doi.org/10.1007/s12043-018-1698-7
Y. Kai, J. Ji, and Z. Yin, Exact solutions and dynamic properties of Ito-type coupled nonlinear wave equations, Phys. Lett. A 421 (2022) 127780, https://doi.org/10.1016/j.physleta.2021.127780
Y. F. Chen, Optical solitons for twin-core couplers in optical metamaterials with Kudryashov’s sextic power law of arbitrary refractive index, Indian J. Phys. 99 (2025) 247, https://doi.org/10.1007/s12648-024-03258-5
T. Wei et al., Wave patterns and dynamical properties of optical propagation by a higher order nonlinear Schrödinger equation, Results Phys. 46 (2023) 106283, https://doi.org/10.1016/j.rinp.2023.106283
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ning-He Yang

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.