Impact of A-site cation substitution on the properties of pinel AY₂O₄ (A = Cd, Zn): A first-principles investigation

Authors

  • K. Hocine University of Relizane
  • Y. Guermit University of Relizane
  • A. Chaabane University of Relizane

DOI:

https://doi.org/10.31349/RevMexFis.71.051002

Keywords:

Spinel compounds; semiconductors; optical properties; thermodynamic properties; FP-LAPW

Abstract

This study presents a comprehensive first-principles investigation of the structural, electronic, magnetic, elastic, thermodynamic, and optical properties of spinel-type compounds CdY₂O₄ and ZnY₂O₄ using density functional theory (DFT) within the full-potential linearized augmented plane wave (FP-LAPW) method. Structural optimization, performed through Murnaghan equation of state fitting and internal atomic relaxation, reveals that both compounds favor a nonmagnetic normal spinel configuration as their ground state. Electronic band structure calculations using PBE-GGA and TB-mBJ functionals demonstrate that both ZnY₂O₄ and CdY₂O4 are direct band gap semiconductors, with wide band gaps ranging from 4.86 to 4.93 eV. Elastic constants confirm mechanical stability, with CdY₂O₄ exhibiting ductile behavior and ZnY₂O₄ displaying higher stiffness but slightly brittle characteristics. Thermodynamic properties, evaluated via the quasi-harmonic Debye model, indicate that both materials maintain structural integrity up to 1200 K and 20 GPa, with ZnY₂O₄ showing superior thermal stability. Optical analyses reveal strong ultraviolet absorption, high transparency in the visible range, and low reflectivity, positioning these materials as promising candidates for UV optoelectronic applications, including UV filters, transparent conductive coatings, and window layers in tandem solar cells. The results highlight that cation substitution at the A-site (Cd²⁺ versus Zn²⁺) significantly influences the mechanical, thermal, and optical properties, making CdY₂O₄ and ZnY₂O₄ attractive for next-generation photovoltaic and photonic devices.

References

D. S. Ginley and C. Bright, Transparent conducting oxides, MRS Bulletin 25 (2000) 15, https://doi.org/10.1557/mrs2000.227

T. Minami, Transparent conducting oxide semiconductors for transparent electrodes, Semiconductor Science and Technology 20 (2005) S35, https://doi.org/10.1088/0268-1242/20/4/S03

M. Nolan and S. D. Elliott, The p-type conduction mechanism in CuAlO2: A hybrid density functional study, Physical Chemistry Chemical Physics 8 (2006) 5350, https://doi.org/10.1039/B609567J

S. D. Mo and W. Y. Ching, Electronic and optical properties of three phases of alumina by first-principles calculations, Physical Review B 51 (1995) 13023, https://doi.org/10.1103/PhysRevB.51.13023

S. R. Pendharkar et al., Spinel oxides in photovoltaics and photocatalysis, Journal of Materials Chemistry A 10 (2022) 10975, https://doi.org/10.1039/D2TA02138D

R. H. French, Electronic band structure of AlO, with comparison to AlON and AlN, Journal of the American Ceramic Society 73 (1990) 477, https://doi.org/10.1111/j.1151-2916.1990.tb05675.x

J. Robertson and S. J. Clark, Limits to doping in oxides, Physical Review B 83 (2011) 075205, https://doi.org/10.1103/PhysRevB.83.075205

S. Kim et al., Electronic structure and optical properties of spinel oxides: ZnAlO and ZnGaO, Journal of Physics: Condensed Matter 21 (2009) 195403, https://doi.org/10.1088/0953-8984/21/19/195403

N. Ueda et al., Transparent p-type semiconducting CuAlO thin films prepared by pulsed laser deposition, Applied Physics Letters 70 (1997) 3561, https://doi.org/10.1063/1.119435

C. H. Bhosale et al., Preparation and characterization of CdO thin films by spray pyrolysis, Materials Chemistry and Physics 78 (2002) 122, https://doi.org/10.1016/S0254-0584(02)00352-5

R. Ghosh, D. Choudhury, and D. Sanyal, Electronic structure of ZnScO and ZnYO using tight-binding LMTO method, Computational Materials Science 38 (2007) 700, https://doi.org/10.1016/j.commatsci.2006.12.019

W. Wisniewski et al., Solid-state synthesis and microstructural characterization of ZnYO spinel, Journal of the European Ceramic Society 32 (2012) 3207, https://doi.org/10.1016/j.jeurceramsoc.2012.03.015

A. A. Lavrentyev et al., Electronic structure and optical properties of RbPbBr, Journal of Physics and Chemistry of Solids 91 (2016) 25, https://doi.org/10.1016/j.jpcs.2015.11.008

N. Ueda and H. Hosono, Electronic structure and optical band gaps of transparent p-type semiconducting oxides, Journal of Applied Physics 91 (2002) 4769, https://doi.org/10.1063/1.1462879

L. Wang, T. Maxisch, and G. Ceder, Oxidation energies of transition metal oxides within the GGA+U framework, Physical Review B 73 (2006) 195107, https://doi.org/10.1103/PhysRevB.73.195107

C. H. Bhosale et al., Optical and electrical characterization of CdO thin films deposited by chemical spray pyrolysis, Thin Solid Films 518 (2010) 1725, https://doi.org/10.1016/j.tsf.2009.10.055

P. Blaha, et al., WIEN2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Austria (2001). 18. D. J. Singh and L. Nordstram, Planewaves, Pseudopotentials, and the LAPW Method (Springer, 2006)

K. Schwarz, P. Blaha, and G. K. H. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences, Computer Physics Communications 147 (2002) 71, https://doi.org/10.1016/S0010-4655(02)00524-4

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77 (1996) 3865, https://doi.org/10.1103/PhysRevLett.77.3865

F. D. Murnaghan, The compressibility of media under extreme pressures, Proceedings of the National Academy of Sciences 30 (1944) 244, https://doi.org/10.1073/pnas.30.9.244

F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential, Physical Review Letters 102 (2009) 226401, https://doi.org/10.1103/PhysRevLett.102.226401

M. Jamal, et al., IRelast: A tool for calculating elastic constants from first principles calculations, Computer Physics Communications 184 (2013) 2199, https://doi.org/10.1016/j.cpc.2013.02.010

M. de Jong et al., Charting the complete elastic properties of inorganic crystalline compounds, Scientific Data 2 (2015) 150009, https://doi.org/10.1038/sdata.2015.9

M. A. Blanco, E. Francisco, and V. Luana, GIBBS: isothermalisobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Computer Physics Communications 158 (2004) 57, https://doi.org/10.1016/j.cpc.2003.12.001

M. Gajdoš, et al., Linear optical properties in the projectoraugmented wave methodology, Physical Review B 73 (2006) 045112, https://doi.org/10.1103/PhysRevB.73.045112

K. Bouferrache et al., Electronic structure, magnetic and optic properties of spinel compound NiFeO, Semiconductor Science and Technology 35 (2020) 095013, https://doi.org/10.1088/1361-6641/ab9a68

A. H. Reshak, S. A. Khan, and Z. A. Alahmed, Investigation of electronic structure and optical properties of MgAlO: DFT approach, Optical Materials 37 (2014) 322, https://doi.org/10.1016/j.optmat.2014.02.008

L. Bao et al., Atomic-scale imaging of cation ordering in inverse spinel ZnSnO nanowires, Nano Letters 14 (2014) 6505, https://doi.org/10.1021/nl503144k

M. Kim et al., Corrosion protection oxide scale formed on surface of Fe-Ni-M (M= Al, Cr, Cu) inert anode for molten salt electrolysis, Materials 15 (2022) 719, https://doi.org/10.3390/ma15030719

V. G. Ivanov et al., Short-range B-site ordering in the inverse spinel ferrite NiFeO, Physical Review B 82 (2010) 024104, https://doi.org/10.1103/PhysRevB.82.024104

J. Liu et al., Unified view of the local cation-ordered state in inverse spinel oxides, Inorganic Chemistry 58 (2019) 14389, https://doi.org/10.1021/acs.inorgchem.9b01775

Y. Guermit et al., Theoretical investigation of the physical properties of spinel-type catalysts based on Scandium: CdScO and ZnScO, Optical and Quantum Electronics 56 (2024) 537, https://doi.org/10.1007/s11082-024-04588-w

F. D. Murnaghan, The compressibility of media under extreme pressures, Proceedings of the National Academy of Sciences 30 (1944) 244, https://doi.org/10.1073/pnas.30.9.244

A. Ghosh et al., Electronic structure of spinel oxides ZnScO and ZnYO: A first principle study, In AIP Conference Proceedings, 1675 (2015) 010045, https://doi.org/10.1063/1.4936972

M. A. Green, A. Ho-Baillie, and H. J. Snaith, The emergence of perovskite solar cells, Nature Photonics 8 (2014) 506, https://doi.org/10.1038/nphoton.2014.134

J. Mehl, Pressure dependence of the elastic moduli in aluminum-rich Al-Li compounds, Physical Review B 47 (1993) 2493, https://doi.org/10.1103/PhysRevB.47.2493

O. H. Nielsen and R. M. Martin, First-Principles Calculation of Stress, Physical Review Letters 50 (1983) 697, https://doi.org/10.1103/PhysRevLett.50.697

Y. Le Page and P. Saxe, Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress, Physical Review B 65 (2002) 104104, https://doi.org/10.1103/PhysRevB.65.104104

S. Q.Wang and H. Q. Ye, First-principles study on elastic properties and phase stability of III-V compounds, Physica Status Solidi (b) 240 (2003) 45, https://doi.org/10.1002/pssb.200304069

W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928), Advances in Earth Science, 1, 1-978

V. Kanchana, G. Vaitheeswaran, and A. Svane, Calculated structural, elastic, and electronic properties of SrCl, Journal of Alloys and Compounds 455 (2008) 480, https://doi.org/10.1016/j.jallcom.2007.11.069

R. Terki et al., Full potential calculation of structural, elastic, and electronic properties of BaZrO and SrZrO, Physica Status Solidi (b) 242 (2005) 1054, https://doi.org/10.1002/pssb.200445313

G. V. Sin’Ko and N. A. Smirnov, Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure, Journal of Physics: Condensed Matter 14 (2002) 6989, https://doi.org/10.1088/0953-8984/14/29/308

Y. Guermit et al., Investigation of structural, elastic, electronic, magnetic and thermoelectric properties for MnRhZ (Z = Al, Si, and Ge) full-Heusler alloys, International Journal of Thermophysics 42 (2021) 1, https://doi.org/10.1007/s10765-021-02835-1

S. F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 (1954) 823, https://doi.org/10.1080/14786435408238134

J. Haines, J. M. Leger, and G. Bocquillon, Synthesis and design of superhard materials, Annual Review of Materials Research 31 (2001) 1, https://doi.org/10.1146/annurev.matsci.31.1.1

V. V. Romaka et al., Determination of structural disorder in Heusler-type phases, Computational Materials Science 172 (2020) 109307, https://doi.org/10.1016/j.commatsci.2019.109307

P. Debye, Theory of specific heats, Annalen der Physik 39 (1912) 784, https://doi.org/10.1002/andp.19123490903

Y.-Q. Xia et al., Recent progress in networked control systemsA survey, International Journal of Automation and Computing 12 (2015) 343, https://doi.org/10.1007/s11633-015-0914-2

A. M. Van Diepen, R. S. Craig, and W. E. Wallage, Crystal field and magnetic heat capacity in PrIn and CeIn, Journal of Physics and Chemistry of Solids 32 (1971) 1867, https://doi.org/10.1016/0022-3697(71)90292-9

P. D. Dernier and J. P. Remeika, Synthesis and symmetry transformation in the perovskite compounds PbHfO and Cd- HfO, Materials Research Bulletin 10 (1975) 187, https://doi.org/10.1016/0025-5408(75)90111-1

S. A. Khan and A. H. Reshak, First principle study of electronic structure, chemical bonding, and optical properties of 5- azido- 1H-tetrazole, International Journal of Electrochemical Science 8 (2013) 9459, https://doi.org/10.20964/2013.07.09

V. B. Bobrov et al., Kramers-Kronig relations for the dielectric function and the static conductivity of Coulomb systems, Europhysics Letters 90 (2010) 10003, https://doi.org/10.1209/0295-5075/90/10003

A. A. Lavrentyev et al., Electronic structure and optical properties of RbPbBr, Journal of Physics and Chemistry of Solids 91 (2016) 25, https://doi.org/10.1016/j.jpcs.2015.11.008

S. Saha, T. P. Sinha, and A. Mookerjee, Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO, Physical Review B 62 (2000) 8828, https://doi.org/10.1103/PhysRevB.62.8828

B. Amiri, A. Lazreg, and F. A. Bensaber, Optical and thermoelectric properties of Gd doped wurtzite GaN, Optik 240 (2021) 166798, https://doi.org/10.1016/j.ijleo.2021.166798

Downloads

Published

2025-09-01

How to Cite

[1]
K. Hocine, Y. Guermit, and A. Chaabane, “Impact of A-site cation substitution on the properties of pinel AY₂O₄ (A = Cd, Zn): A first-principles investigation”, Rev. Mex. Fís., vol. 71, no. 5 Sep-Oct, pp. 051002 1–, Sep. 2025.