Observation of nucleon transfer and deuteron breakup on d+13C system

Authors

  • D. M. Janseitov Institute of Nuclear Physics
  • D. Alimov Institute of Nuclear Physics
  • D. S. Valiolda Institute of Nuclear Physics
  • Sh. Kazhykenov Al-Farabi Kazakh National University
  • B. Mauyey Joint Institute for Nuclear Research
  • K. W. Kemper Florida State University
  • Sh. Hamada Faculty of Science, Tanta University

DOI:

https://doi.org/10.31349/RevMexFis.71.031204

Keywords:

Deuteron breakup; transfer reaction; cluster folding model; CRC and CDCC methods

Abstract

The advanced computational methods continuum-discretized coupled-channel (CDCC) and coupled-reaction channel (CRC) approaches were used to analyze several sets of experimental data, including the angular distributions of 13C(d,d)13C at deuteron energy, Ed = 14.5 MeV, 13C(d,p)14C neutron stripping reaction obtained at Ed = 15.3 MeV, and data sets for 13C(d,t)12C neutron pickup reaction at Ed = 13.6 MeV and 13C(d,n)14N proton stripping reaction at Ed = 15.7 MeV. The analysis revealed that while forward scattering angles were well-described by parameter-free CDCC calculations accounting for deuteron breakup, backward angles were significantly influenced by virtual effects from proton and neutron transfer reactions. Notably, the impacts of neutron and proton stripping reactions were substantial, reflecting their large cross sections, whereas the contribution from neutron pickup-transfer reactions was less significant.

References

G. H. Rawitscher, Effect of deuteron breakup on elastic deuteron-nucleus scattering, Phys. Rev. C 9 (1974) 2210, https://doi.org/10.1103/PhysRevC.9.2210

M. Yahiro et al., Chapter III. Effects of Deuteron Virtual Breakup on Deuteron Elastic and Inelastic Scattering, Prog. Theor. Phys. Supp. 89 (1986) 32, https://doi.org/10.1143/PTPS.89.32

N. Austern et al., Continuum-discretized coupled-channels calculations for three-body models of deuteron-nucleus reactions, Phys. Rep. 154 (1987) 125, https://doi.org/10.1016/0370-1573(87)90094-9

C. W. Johnson et al., White paper: from bound states to the continuum, J. Phys. G 47 (2020) 123001, https://doi.org/10.1088/1361-6471/abb129

P. Chau Huu-Tai, Systematic study of elastic and reaction cross sections of deuteron induced reactions within the CDCC approach, Nucl. Phys. A 773 (2006) 56, https://doi.org/10.1016/j.nuclphysa.2006.04.006

N. Keeley, N. Alamanos, V. Lapoux, Comprehensive analysis method for (d,p) stripping reactions, Phys. Rev. C 69 (2004) 064604, https://doi.org/10.1103/PhysRevC.69.064604

N. Keeley, R.S. Mackintosh, Pickup coupling effects in deuteron scattering: The case of d+40Ca, Phys. Rev. C 77 (2008) 054603, https://doi.org/10.1103/PhysRevC.77.054603

N. J. Upadhyay, A. Deltuva, F. M. Nunes, Testing the continuum-discretized coupled channels method for deuteroninduced reactions, Phys. Rev. C 85 (2012) 054621, https://doi.org/10.1103/PhysRevC.85.054621

R. S. Mackintosh, N. Keeley, Strong pickup-channel coupling effects in proton scattering: The case of p+10Be, Phys. Rev. C 76 (2007) 024601, https://doi.org/10.1103/PhysRevC.76.024601

M. Kawai, M. Kamimura, K. Takesako, Chapter V. CoupledChannels Variational Method for Nuclear Breakup and Rearrangement Processes, Prog. Theor. Phys. Supp. 89 (1986) 118, https://doi.org/10.1143/PTPS.89.118

A. Amar, K. Rusek, Sh. Hamada, Effects of deuteron breakup and nucleon-transfer reactions on d+11B elastic scattering, Eur. Phys. J. A 59 (2023) 182, https://doi.org/10.1140/epja/s10050-023-01094-5

B. A. Urazbekov et al., Single-particle and cluster modes of 13C excited states of 3.09, 8.86 and 9.89 MeV, Int. J. Mod. Phys. E 31 (2022) 2250031, https://doi.org/10.1142/S0218301322500318

L. I. Galanina et al., Study of the Mechanism of the 13C(d,p)14C Reaction at Ed= 15.3 MeV, Phys. Atom. Nuclei 81 (2018) 176, https://doi.org/10.1134/S1063778818020084

N. I. Zaika et al., Bull. Russian Academy of Sciences 37 (1974) 140. 15. M. Febbraro et al., (d,n) proton-transfer reactions on 9Be, 11B, 13C, 14,15N and 19F and spectroscopic factors at Ed= 16 MeV, Phys. Rev. C 96 (2017) 024613, https://doi.org/10.1103/PhysRevC.96.024613

I. J. Thompson, Coupled reaction channels calculations in nuclear physics, Comput. Phys. Rep. 7 (1988) 167, https://doi.org/10.1016/0167-7977(88)90005-6

W. Alharbi, A. A. Ibraheem, Sh. Hamada, New microscopic analysis for 15N(d,p)16N neutron transfer reaction at 15 MeV, Int. J. Mod. Phys. E 32 (2023) 2350029, https://doi.org/10.1142/S0218301323500295

R. L. Varner et al., A global nucleon optical model potential, Phys. Rep. 201 (1991) 57, https://doi.org/10.1016/0370-1573(91)90039-O

A. J. Koning and J.P. Delaroche, Local and global nucleon optical models from 1 keV to 200 MeV, Nucl. Phys. A 713 (2003) 231, https://doi.org/10.1016/S0375-9474(02)01321-0

M. Lacombe, et al., Parametrization of the Paris N-N potential, Phys. Rev. C 21 (1980) 861 , https://doi.org/10.1103/PhysRevC.21.861

Y. Iseri, M. Yahiro and M. Kamimura, Chapter IV. CoupledChannels Approach to Deuteron and 3He Breakup Reactions, Prog. Theo. Phys. Suppl. 89 (1986) 84, https://doi.org/10.1143/PTPS.89.84

B. Mauyey et al., Deuteron breakup effects on the d + 12C, 15N, 16O, 24Mg, 32S, 58Ni and 70Ge elastic scattering angular distributions, Chin. J. Phys. 90 (2024) 155, https://doi.org/10.1016/j.cjph.2024.05.003

P. Descouvemont, Four-body extension of the continuumdiscretized coupled-channels method, Phys. Rev. C 97 (2018) 064607, https://doi.org/10.1103/PhysRevC.97.064607

P. A. Schmelzbach et al., Scattering of polarized tritons by 9Be and 12C, Phys. Rev. C l7 (1978) 16, https://doi.org/10.1103/PhysRevC.17.16

S. Yu. Mezhevych et al., The 13C+11B elastic and inelastic scattering and isotopic effects in the 12,13C+11B scattering, Nucl. Phys. A 724 (2003) 29, https://doi.org/10.1016/S0375-9474(03)01478-7

S. Yu. Mezhevych et al., Excitation of 14C by 45 MeV 11B ions, Nucl. Phys. A 753 (2005) 13, https://doi.org/10.1016/j.nuclphysa.2005.02.119

A. T. Rudchik, Yu.M. Tchuvilsky, Spectroscopic amplitudes of multinucleon clusters in 1p-shell nuclei and analysis of manynucleon transfer reactions, Ukr. Fiz. Zh. 30 (1985) 819

A. T. Rudchik et al., The 11B+12C elastic and inelastic scattering at E(11B) = 49 MeV and energy dependence of the 11B+12C interaction, Nucl. Phys. A 695 (2001) 51, https://doi.org/10.1016/S0375-9474(01)01106-X

V. A. Ziman et al., Channel couplings in the 12C(14N,X) reactions at E(14N) = 116 MeV, Nucl. Phys. A 624 (1997) 459, https://doi.org/10.1016/S0375-9474(97)00328-X

A. T. Rudchik et al., Direct versus exchange processes in the reactions 7Li(14N, 14,15N) at 110 MeV, Nucl. Phys. A 700 (2002) 25, https://doi.org/10.1016/S0375-9474(01)01319-7

Downloads

Published

2025-05-01

How to Cite

[1]
D. M. Janseitov, “Observation of nucleon transfer and deuteron breakup on d+13C system”, Rev. Mex. Fís., vol. 71, no. 3 May-Jun, pp. 031204 1–, May 2025.