K2AgInCl6: A promising material for optoelectronic and thermoelectric applications

Authors

  • S. M. Benchikh Abdelhamid Ibn Badis University
  • M. Matougui Abdelhamid Ibn Badis University
  • A. Messaoudi Abdelhamid Ibn Badis University
  • B. Bouadjemi Abdelhamid Ibn Badis University
  • A. Khatar Abdelhamid Ibn Badis University
  • S. Haid Abdelhamid Ibn Badis University / Tissemsilt University
  • H. Bentahar Abdelhamid Ibn Badis University
  • M. Houari Abdelhamid Ibn Badis University / University of Relizane
  • T. Lantri Abdelhamid Ibn Badis University / University of Relizane
  • S. Bentata Abdelhamid Ibn Badis University

DOI:

https://doi.org/10.31349/RevMexFis.71.040502

Keywords:

FP-LAPW, Double perovskite, Semiconductor, Goldschmidt factor, figure of merit ZT, optoelectronics

Abstract

Using the FP-LAPW method with the exchange and correlation potentials of the GGA and mBJ-GGA approximations, we have studied the structural, electronic, thermoelectric, and optical properties of the double perovskite halide compound K2AgInCl6. Our results indicate that this compound is stable in the nonmagnetic phase and exhibits structural stability according to the normative values ​​of the Goldsmith factor (t) and octahedral factor (μ). It is thermodynamically stable, as evidenced by negative formation energy. K2AgInCl6 acts as a semiconductor, displaying a direct band gap of 1.162 eV in GGA and 2.944 eV in mBJ-GGA. Thermoelectric analysis reveals excellent properties, with ZT values ​​close to unity, but nevertheless, the GGA approximation performs well at medium and high temperatures (300-800 K), while mBJ-GGA is more efficient at lower temperatures (50-100 K), with ZTs ranging from 0.73 to 0.7 for the latter approximation. In addition, K2AgInCl6 shows transparency in the infrared and visible spectrums, as well as strong absorption and reflectivity in the UV spectrum, making it suitable for various applications, including in broadband solar cells to improve efficiency through extended absorption. In optoelectronics, it can serve as a UV light emitter in high-power LEDs and potentially as a UV filter to protect materials and people from harmful radiation.

References

F. Estrada Chávez, E. J. Guzmán, B. Aguilar, O. Navarro, and M. Avignon, Increase of Curie temperature with La doping in the double perovskite Sr2-LayFeMoO6 within an electronic correlation approach, Rev. Mex. Fís. 64 (2018) 145, https://doi.org/10.31349/RevMexFis.64.145

Y. Bouchentouf Idriss, Hubbard’s parameter influence on Ba2GdReO6 properties, a promising ferromagnetic double Perovskite oxide for thermoelectric applications, Rev. Mex. Fís. 69 (2023) 051006. https://doi.org/10.31349/RevMexFis.69.051006

L. F. Blaha, A. Maafa, A. Chahed, M. Boukli, and A. Sayade, The first principle calculations of structural, magnetoelectronic, elastic, mechanical, and thermoelectric properties of half-metallic double perovskite oxide Sr2TiCoO6, Rev. Mex. Fís. 67 (2021) 114, https://doi.org/10.31349/RevMexFis.67.114

A. M. Reyes, Y. Arredondo, and O. Navarro, First principles study of the effects of disorder in the Sr2FeMoO6 perovskite, Rev. Mex. Fís. 62 (2016) 160

A. Labdelli, and N. Hamdad, Predictive study of ferromagnetism and antiferromagnetism coexistence in Ba1- xGdxRuO3 induced by Gd-doping, Rev. Mex. Fís. 67 (2021) 061002, https://doi.org/10.31349/RevMexFis.67.061002

A. Lemziouka, F. Nekkach, H. Lemziouka, R. Moubah, A. Boutahar, M. El Yazidi, and M. Lamiae, Investigation of the structural and optical characteristics of La2FeCrO6 double perovskite for optoelectronic applications, Journal of Molecular Structure, 1316 (2024) 138884, https://doi.org/10.1016/j.molstruc.2024.138884

P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, and J. Luitz, “wien2k”, An augmented plane wave+ local orbitals program for calculating crystal properties, (2001)

M. Houari, B. Bouadjemi, A. Abbad, W. Benstaali, S. Haid, and T. Lantri, Structural, electronic and optical properties of cubic fluoroelpasolite Cs2NaYF6 by density functional theory, Chinese Journal of Physics, 56 (2018) 1756, https://doi.org/10.1016/j.cjph.2018.05.004

J. P. Perdew and K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Physical review letters, 77 (1996) 3865, https://doi.org/10.1103/PhysRevLett.77.3865

D. Koller, F. Tran, and P. Blaha, Merits and limits of the modified Becke-Johnson exchange potential, Physical Review B, 83 (2011) 195134, https://doi.org/10.1103/PhysRevB.83.195134

D. J. Singh, Electronic structure calculations with the TranBlaha modified Becke-Johnson density functional, Physical Review B, 82 (2010) 205102, https://doi.org/10.1103/PhysRevB.82.205102

N. N. Anua, R. Ahmed, A. Shaari, M. A. Saeed, B. U. Haq, and S. Goumri-Said, Non-local exchange correlation functionals impact on the structural, electronic and optical properties of III-V arsenides, Semiconductor Science and Technology, 28 (2013) 105015, https://doi.org/10.1088/0268-1242/28/10/105015

D. Behera, and S.K. Mukherjee, Mater first-principles calculations to investigate structural, optoelectronics and thermoelectric properties of lead free Cs2GeSnX6 (X = Cl, Br), Sci. Eng. B 292 (2023) 116421, https://doi.org/10.1016/j.mseb.2023.116421

F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential, Physical review letters, 102 (2009) 226401. https://doi.org/10.1103/PhysRevLett.102.226401

M. Bilal, B. Khan, H. R. Aliabad, M. Maqbool, S. J. Asadabadi, and I. Ahmad, Thermoelectric properties of SbNCa3 and BiNCa3 for thermoelectric devices and alternative energy applications, Computer Physics Communications, 185 (2014) 1394, https://doi.org/10.1016/j.cpc.2014.02.001

R. Bentata et al., New p-type sp-based half-Heusler compounds LiBaX (X= Si, Ge) for spintronics and thermoelectricity via ab-initio calculations, Journal of Computational Electronics, 20 (2021) 1072, https://doi.org/10.1007/s10825-021-01702-x

A. Mera, S. Awais Rouf, T. Zelai, N. A. Kattan and Q. Mahmood, Study of inorganic double perovskites Cs2RbZI6 (Z = Ga, In) as energy harvesting aspirant: a DFT approach, Optical and Quantum Electronics, (2023) https://doi.org/10.1007/s11082-023-05195-9

F. D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30 (1944) 244, https://doi.org/10.1073/pnas.30.9.244

J. B. Goodenough, J. M. Longo, and K. H. Hellwege, Crystallographic and Magnetic Properties of Perovskite and PerovskiteRelated Compounds (Ed), Landolt-Bornstein Tabellen, New Series III 4a, (Springer-Verlag, Berlin, 1970) 126

R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32 (1976) 751, https://doi.org/10.1107/S0567739476001551

S.A. Sofi, D.C. Gupta, Robustness in ferromagnetic phase stability, half-metallic behavior and transport properties of cobaltbased full-Heuslers compounds: A first principles approach. Int J Quantum Chem. 121 (2021) e26538. https://doi.org/10.1002/qua.26538

P.K. Kamlesh, R. Gautam, S. Kumari, and A.S. Verma, Investigation of inherent properties of XScZ (X = Li, Na, K; Z = C, Si, Ge) half-Heusler compounds: Appropriate for photovoltaic and thermoelectric applications, Physica B: Physics of Condensed Matter (2020), https://doi.org/10.1016/j.physb.2020.412536

S. Haid, W. Benstaali, A. Abbad, B. Bouadjemi, S. Bentata and Z. Aziz, Thermoelectric, Structural, Optoelectronic and Magnetic properties of double perovskite Sr2CrTaO6: First principle Study, Materials Science & Engineering B 245 (2019) 68, https://doi.org/10.1016/j.mseb.2019.05.013

B. Bouadjemi, T. Lantri, M. Matougui, M. Houari, R. Bentata, Z. Aziz and S. Bentata, High Spin Polarization and Thermoelectric Efficiency of Half-Metallic Ferromagnetic CrYSn (Y = Ca, Sr) of Half-Heusler Compounds, SPIN, 10 (2020) 2050010, https://doi.org/10.1107/S0567739476001551

M. Matougui et al., Rattling Heusler semiconductors’ thermoelectric properties: First-principles prediction, Chinese Journal of Physics, 57 (2019) 195, https://doi.org/10.1016/j.cjph.2018.11.015

M. Houari et al., Semiconductor behavior of halide perovskites AGeX3 (A= K, Rb and Cs; X= F, Cl and Br): first-principles calculations, Indian J Phys (2019) 1, https://doi.org/10.1007/s11082-019-1949-y

G. K. Madsen and D.J. Singh, Computer Physics Communications 175 (2006) 67

A. Bejan and A.D. Kraus, Heat transfer handbook, (John Wiley & Sons, 2003)

M. Houari et al., Optoelectronic properties of germanium iodide perovskites AGeI3 (A = K, Rb and Cs): first principles investigations, Optical and Quantum Electronics, 51 (2019) 234

S. Haid, B. Bouadjemi, M. Houari, M. Matougui, T. Lantri, S. Bentata, and Z. Aziz. Optical properties of half-metallic ferrimagnetic double perovskite Sr2CaOsO6 compound, Solid State Communications 322 (2020) 114052. https://doi.org/10.1016/j.ssc.2020.114052

M. Houari et al., Structural, electronic and optical properties of cubic fluoroelpasolite Cs2NaYF6 by density functional theory, Chinese journal of physics, 56 (2018) 1756, https://doi.org/10.1016/j.cjph.2018.05.004

J. Nam Joong et al., Compositional engineering of perovskite materials for high-performance solar cells, Nature, 517 (2015) 476, https://doi.org/10.1038/nature14133

K. Sadia et al., Utilizing density functional theory (DFT) approach for predicting the optoelectronic, structural, and magnetic properties of the spin-polarized scintillating bromo-elpasolite Cs2LiCeBr6, Optical and Quantum Electronics, 55 (2023) 861. https://doi.org/10.1007/s11082-023-05122-y

K. Arvind, M. Kumar, and R.P. Singh, Magnetic, optoelectronic, and thermodynamic properties of half-metallic double perovskite oxide, Ba2YbTaO 6: a density functional theory study, Journal of Materials Science: Materials in Electronics, 32 (2021) 12951, https://doi.org/10.1007/s10854-021-05637-8

J. Sahariya, P. Kumar, and A. Soni, Structural and optical investigations of ZnGa2X4 (X= S, Se) compounds for solar photovoltaic applications, Materials Chemistry and Physics, 199 (2017) 257, https://doi.org/10.1016/j.matchemphys.2017.07.003

Downloads

Published

2025-07-01

How to Cite

[1]
S. . Benchikh, “K2AgInCl6: A promising material for optoelectronic and thermoelectric applications”, Rev. Mex. Fís., vol. 71, no. 4 Jul-Aug, pp. 040502 1–, Jul. 2025.