Modeling the link between carbon emissions and ocean acidification using a Lotka-Volterra dynamical system

Authors

  • L. F. Mendoza-Mendoza Universidad Michoacana de San Nicolás de Hidalgo
  • I. Álvarez-Ríos Universidad Michoacana de San Nicolás de Hidalgo
  • F. Z. C. León-Altamirano Universidad Michoacana de San Nicolás de Hidalgo
  • F. S. Guzmán Universidad Michoacana de San Nicolás de Hidalgo

DOI:

https://doi.org/10.31349/RevMexFis.71.051401

Keywords:

Carbon emissions; ocean acidification; mathematical modeling

Abstract

We study the possibility that the dynamics of carbon emissions and aragonite saturation in sea water can be modeled with a non-linear coupled system of two Ordinary Differential Equations. In total, there are seven parameters plus two initial conditions that we fit in order to adjust experimental data. For the fitting, we use two independent methods: Genetic Algorithms and Monte Carlo Markov Chains, both useful at fitting in high-dimensional parameter spaces. The data for the carbon emissions we deal with is obtained from several sources dedicated to monitoring the changes in these emissions over time. We calculated aragonite saturation using a combination of carbon chemistry measures from two stations. Our findings show that with this combination of ODEs and the fitting methods chosen, these two phenomena can be reproduced within an 8% error.

References

D. Lüthi et al., High-resolution carbon dioxide concentration record 650,000800,000 years before present, Nature 453 (2008) 379, https://doi.org/10.1038/nature06949

M. Pagani, Z. Liu, J. Lariviere, and A. C. Ravelo, High earth-system climate sensitivity determined from pliocene carbon dioxide concentrations, Nature Geoscience 3 (2010) 27, https://doi.org/10.1038/ngeo724

Intergovernmental Panel on Climate Change (IPCC), Framing, context, and methods, in Climate Change 2021 - The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2023) p. 147-286

D. Chen et al., Framing, context, and methods, in Climate Change 2021: The Physical Science Basis. Contribution of working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change ed V Masson-Delmotte et al. Change (Cambridge University Press, 2021) p. 147- 286

F. J. Millero et al., Dissociation constants for carbonic acid determined from field measurements, Deep Sea Research Part I: Oceanographic Research Papers 49 (2002) 1705, https://doi.org/10.1016/S0967-0637(02)00093-6

S. C. Doney, V. J. Fabry, R. A. Feely, and J. A. Kleypas, Ocean acidification: The other CO2 problem, Annual Review of Marine Science 1 (2009) 169, https://doi.org/10.1146/annurev.marine.010908.163834

C. Garcia-Soto et al., An overview of ocean climate change indicators: Sea surface temperature, ocean heat content, ocean ph, dissolved oxygen concentration, arctic sea ice extent, thickness and volume, sea level and strength of the amoc (atlantic meridional overturning circulation), Frontiers in Marine Science 8 (2021), https://doi.org/10.3389/fmars.2021.642372

S. Barker and A. J. Ridgwell, Ocean acidification, Nature Education Knowledge 3 (2012) 10.

J. M. Lough and M. J. H. van Oppen, Introduction: Coral bleaching-patterns, processes, causes and consequences, in Coral Bleaching: Patterns, Processes, Causes and Consequences, edited by Madeleine J. H. van Oppen and Janice M. Lough (Springer International Publishing, Cham, 2018) pp. 1-8. https://doi.org/10.1007/978-3-319-75393-51

J. G. Canadell et al., Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change (Cambridge University Press, 2021)

V. Brovkin, S. Sitch, W. Von Bloh, M. Claussen, E. Bauer, and W. Cramer, Role of land cover changes for atmospheric Co2 increase and climate change during the last 150 years, Global Change Biology 10 (2004) 1253, https://doi.org/10.1111/j.1365-2486.2004.00812.x

L.-Q. Jiang, R. A. Feely, B. R. Carter, D. J. Greeley, D. K. Gledhill, and K. M. Arzayus, Climatological distribution of aragonite saturation state in the global oceans, Global Biogeochemical Cycles 29 (2015) 1656, https://doi.org/10.1002/2015GB005198

P. Friedlingstein et al., Global carbon budget 2023, Earth System Science Data 15 (2023) 5301, https://doi.org/10.5194/essd-15-5301-2023

R. M. Hoesly et al., Historical (1750-2014) anthropogenic emissions of reactive gases and aerosols from the community emissions data system (ceds), Geoscientific Model Development 11 (2018) 369, https://doi.org/10.5194/gmd-11-369-2018

Patrick R O’Rourke et al., Ceds v 2021 04 21 release emission data ( v 2021 02 05) [Dataset] (Zenodo, 2021)

G. Janssens-Maenhout et al., Edgar v4.3.2 global atlas of the three major greenhouse gas emissions for the period 1970- 2012, Earth System Science Data 11 (2019) 959, https://doi.org/10.5194/essd-11-959-2019

European Commission, Joint Research Centre (JRC), International Energy Agency (IEA), EDGAR (Emissions Database for Global Atmospheric Research) Community GHG Database, (2023), a collaboration between the European Commission, Joint Research Centre (JRC), the International Energy Agency (IEA), and comprising IEA-EDGAR CO2, EDGAR CH4, EDGAR N2O, EDGAR F-GASES version 8.0

R. M. Andrew, A comparison of estimates of global carbon dioxide emissions from fossil carbon sources, Earth System Science Data 12 (2020) 1437, https://doi.org/10. 5194/essd-12-1437-2020

T. Gasser, L. Crepin, Y. Quilcaille, R. A. Houghton, P. Ciais, and M. Obersteiner, Historical CO2 emissions from land use and land cover change and their uncertainty, Biogeosciences 17 (2020) 4075, https://doi.org/10.5194/bg-17-4075-2020

R. A. Houghton and A. Castanho, Annual emissions of carbon from land use, land-use change, and forestry from 1850 to 2020, Earth System Science Data 15 (2023) 2025, https://doi.org/10.5194/essd-15-2025-2023

N. R. Bates and R. J. Johnson, Acceleration of ocean warming, salinification, deoxygenation and acidification in the surface subtropical North Atlantic Ocean, Communications Earth and Environment 1 (2020) 33, https://doi.org/10.1038/s43247-020-00030-5

T. J. Lueker, C. D. Keeling, P. R. Guenther, M. Whalen, and W. G. Mook, Inorganic Carbon Variations in Surface Ocean Water near Bermuda, Tech. Rep. (UC San Diego: Scripps Institution of Oceanography, 1998)

A. J. Sutton et al., Advancing best practices for assessing trends of ocean acidification time series, Frontiers in Marine Science 9 (2022), https://doi.org/10.3389/fmars.2022.1045667

E. Lewis, D. Wallace, and L. J. Allison, Program developed for CO2 system calculations, (1998), https://doi.org/10.2172/639712

J. D. Sharp et al., Co2sysv3 for matlab, (2020)

M. P. Humphreys, E. R. Lewis, J. D. Sharp, and D. Pierrot, Pyco2sys v1.8: marine carbonate system calculations in python, Geoscientific Model Development 15 (2022) 15, https://doi.org/10.5194/gmd-15-15-2022

D. Pierrot, J.-M. Epitalon, J. C. Orr, E. Lewis, and D. W. R. Wallace, Ms excel program developed for CO2 system calculations - version 3.0, GitHub repository (2021)

D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, emcee: The mcmc hammer, Publications of the Astronomical Society of the Pacific 125 (2013) 306, https://doi.org/10.1086/670067

J. Goodman and J. Weare, Ensemble samplers with affine invariance, Communications in Applied Mathematics and Computational Science 5 (2010) 65, http://dx.doi.org/10.2140/camcos.2010.5.65

M. Ishizu, Y. Miyazawa, T. Tsunoda, and X. Guo, Development of a biogeochemical and carbon model related to ocean acidification indices with an operational ocean model product in the north western pacific, Sustainability 11 (2019) 2677, https://doi.org/10.3390/su11092677

D. J. Pilcher et al., Modeled effect of coastal biogeochemical processes, climate variability, and ocean acidification on aragonite saturation state in the bering sea, Frontiers in Marine Science 5 (2019), https://doi.org/10.3389/fmars.2018.00508

N. Ben Hadid, V. Guglielmi, F. Touratier, A. Mouakher, and C. Goyet, Ocean acidification from 1955 to 2100 at bats and hydrostation s (bermuda area), (2024), preprint, available at SSRN. https://dx.doi.org/10.2139/ssrn.4779316

C. Galdies and R. Guerra, High resolution estimation of ocean dissolved inorganic carbon, total alkalinity and ph based on deep learning, Water 15 (2023), https://doi.org/10.3390/w15081454

Downloads

Published

2025-09-01

How to Cite

[1]
L. F. Mendoza-Mendoza, I. . Álvarez-Ríos, F. Z. León-Altamirano, and F. S. Guzmán-Murillo, “Modeling the link between carbon emissions and ocean acidification using a Lotka-Volterra dynamical system”, Rev. Mex. Fís., vol. 71, no. 5 Sep-Oct, pp. 051401 1–, Sep. 2025.

Issue

Section

14 Other areas in Physics