Thermodynamic properties and coherent states for the harmonic oscillator in cosmic string space-time with dislocation

Authors

  • M. Salazar Ramírez ESCOM-IPN
  • R. D. Mota ESIME-IPN, Unidad Culhuacán
  • M. R. Cordero-López ESCOM-IPN
  • S. de J. Guatemala Marín ESCOM-IPN

DOI:

https://doi.org/10.31349/RevMexFis.71.031701

Keywords:

Algebraic methods; coherent states; cosmic string spacetime; quantum statistical physics; Schrödinger factorization

Abstract

We study the problem of a quantum harmonic oscillator in the presence of a repulsive inverse-square potential within a cosmic string spacetime that contains a dislocation. Also, we study how a rotational frame affects the quantum harmonic oscillator plus the repulsive potential within this space-time geometry. For both problems, we find three operators for the radial part of each problem and show that they close the su(1, 1) Lie algebra. From the theory of unitary irreducible representations of the su(1, 1) Lie algebra, we obtain the energy spectrum from an algebraic point of view. Also, we obtain the wave functions, the radial coherent states, and their time evolution. Finally, we calculate the thermodynamic properties for each of these problems.

References

T. W. B. Kibble, Some implications of a cosmological phase transition, Phys. Rep. 67 (1980) 183, https://doi.org/10.1016/0370-1573(80)90091-5

S. Zare, H. Hassanabadi, and M. de Montigny, Non–inertial effects on a generalized DKP oscillator in a cosmic string spacetime, Gen. Relativ. Grav. 52 (2020) 25, https://doi.org/10.1007/s10714-020-02676-0

M. Barriola, and A. Vilenkin, Gravitational Field of a Global Monopole, Phys. Rev. Lett. 63 (1989) 341, https://doi.org/10.1103/PhysRevLett.63.341

E. R. Bezerra de Mello, and C. Furtado, Nonrelativistic scattering problem by a global monopole, Phys. Rev. D. 56 (1997) 1345, https://doi.org/10.1103/PhysRevD.56.1345

Ti-Sheng, Chen, et al., Pseudospin symmetry in relativistic framework with harmonic oscillator potential and WoodsSaxon potential, Chinese physics letters. 20.3 (2003) 358, https://doi.org/10.1088/0256-307X/20/3/312

P. Exner, Complex-potential description of the damped harmonic oscillator, Journal of Mathematical Physics. 24.5 (1983) 1129, https://doi.org/10.1063/1.525840

F. Marsiglio, The harmonic oscillator in quantum mechanics: A third way, American Journal of Physics. 77.3 (2009) 253, https://doi.org/10.1119/1.3042207

F. Ahmed, and A. Bouzenada, Quantum dynamics of spin0 particles in a cosmological space-time, Nuclear Physics B. 1000 (2024) 116490, https://doi.org/10.1016/j.nuclphysb.2024.116490

A. Bouzenada, A. Boumali, and Edilberto O. Silva, Applications of the Klein–Gordon equation in the Feshbach-Villars representation in the non-inertial cosmic string space-time, Annals of Physics. 458 (2023) 169479, https://doi.org/10.1016/j.aop.2023.169479

F. Ahmed, and A. Bouzenada, Study of scalar particles through the Klein–Gordon equation under rainbow gravity effects in Bonnor-Melvin-Lambda space-time, Communications in Theoretical Physics. 76.4 (2024) 045401, https://doi.org/10.1088/1572-9494/ad2e88

F. Ahmed, and A. Bouzenada, Relativistic spin-0 Duffin– Kemmer-Petiau equation in Bonnor-Melvin-Lambda solution, International Journal of Modern Physics A. 39 (2024) 2450032, https://doi.org/10.1142/S0217751X24500325

F. Ahmed, and A. Bouzenada, PDM relativistic quantum oscillator in Einstein–Maxwell-Lambda space-time,22 (2025) 2450253, https://doi.org/10.1142/S0219887824502530

F. Ahmed, and A. Bouzenada, Scalar fields in Bonnor-MelvinLambda universe with potential: a study of dynamics of spin-zero particles-antiparticles, Physica Scripta. 99.6 (2024) 065033, https://doi.org/10.1088/1402-4896/ad4830

A. Bouzenada, et al., Feshbach–Villars oscillator in Kaluza— Klein theory, Nuclear Physics B 994 (2023) 116288, https://doi.org/10.1016/j.nuclphysb.2023.116288

F. Ahmed, Aharonov-Bohm and non–inertial effects on a Klein–Gordon oscillator with potential in the cosmic string space–time with a spacelike dislocation, Chinese Journal of Physics. 66 (2020) 587, https://doi.org/10.1016/j.cjph.2020.06.012

S. Zare, H. Hassanabadi and M. de Montigny, Non–inertial effects on a generalized DKP oscillator in a cosmic string space– time, Gen. Relativ. Gravit. 52 (2020) 25, https://doi.org/10.1007/s10714-020-02676-0

A. V. D. M. Maia and K. Bakke, Harmonic oscillator in an elastic medium with a spiral dislocation, Physica B. 531 (2018) 213, https://doi.org/10.1016/j.physb.2017.12.045

A. Bouzenada, et al., Dynamics of a Klein-Gordon Oscillator (KGO) in the Presence of a Cosmic String in SomRaychaudhuri Space-Time, Theor Math Phys. 221 (2024) 2193, https://doi.org/10.1134/S0040577924120134

A. Bouzenada, A. Boumali, and F. Serdouk, Thermal properties of the 2D Klein-Gordon oscillator in a cosmic string space-time, Theoretical and Mathematical Physics. 216.1 (2023) 1055, https://doi.org/10.1134/S0040577923070115

M. M. Cunha, and Edilberto O. Silva, Relativistic Quantum Motion of an Electron in Spinning Cosmic String Spacetime in the Presence of Uniform Magnetic Field and Aharonov– Bohm Potential, Advances in High Energy Physics. 2021.1 (2021) 6709140, https://doi.org/10.1155/2021/6709140

F. Ahmed, Harmonic Oscillator in Cosmic String Space–Time with Dislocation Under a Repulsive 1/r2 Potential and Rotational Frame Effects, Few-Body Syst. 65 (2024) 6 https://doi.org/10.1007/s00601-023-01874-1

R. M. Wald, Quantum field theory in curved space–time and black hole thermodynamics. (University of Chicago press, Chicago, 1994)

J. R. Klauder, and Bo-Sture Skagerstam, Coherent states: applications in physics and mathematical physics. (World scientific, Singapore, 1985)

R. J. Glauber, Coherent and incoherent states of the radiation field, Physical Review. 131.6 (1963) 2766, https://doi.org/10.1103/PhysRev.131.2766

G. J. Rampho, An. N. Ikot, C. O. Edet, and U.S. Okorie, Energy spectra and thermal properties of diatomic molecules in the presence of magnetic and AB fields with improved Kratzer potential, Mol. Phys. 119 (2021) e1821922, https://doi.org/10.1080/00268976.2020.1821922

C. O. Edet, P. O. Amadi, U. S. Okorie, A. Tas, A.N. Ikot, and G. Rampho, Solutions of Schrödinger equation and thermal properties of generalized trigonometric Poschl–Teller potential, Rev. Mex. Fis. 66 (2020) 824, https://doi.org/10.31349/revmexfis.66.824

C. O. Edet, U. S. Okorie, G. Osobonye, A. N. Ikot, G. J. Rampho and R. Sever, Thermal properties of Deng-FanEckart potential model using Poisson summation approach, J. Math. Chem. 58 (2020) 989, https://doi.org/10.1007/s10910-020-01107-4

A. R. P. Moreira, Thermodynamic properties and entropy information of fermions in the Rindler spacetime, Physica E. 152 (2023) 115747, https://doi.org/10.1016/j.physe.2023.115747

M. Ishihara, Thermodynamics of the independent harmonic oscillators with different frequencies in the Tsallis statistics in the high physical temperature approximation, Eur. Phys. J. B. 95 (2022) 53, https://doi.org/10.1140/epjb/s10051-022-00309-w

A. Boumali, A. Bouzenada, S. Zare, and H. Hassanabadi, Thermal properties of the q-deformed spin-one DKP oscillator, Physica A. 628 (2023) 129134, https://doi.org/10.1016/j.physa.2023.129134

H. Hassanabadi, S. Sargolzaeipor and B. H. Yazarloo, Thermodynamic properties of the three-dimensional Dirac oscillator with Aharonov–Bohm field and magnetic monopole potential, Few-Body Syst. 56 (2015) 115, https://doi.org/10.1007/s00601-015-0944-5

S. H. Dong, W. H. Huang, W. S. Chung, P. Sedaghatnia and H. Hassanabadi, Exact solutions to generalized Dunkl oscillator and its thermodynamic properties, Europhys. Lett. 135 (2021) 30006, https://doi.org/10.1209/0295-5075/ac2453

A. Boumali, et al., Thermal properties of the q-deformed spinone DKP oscillator, Physica A. 628 (2023) 129134, https://doi.org/10.1016/j.physa.2023.129134

A. Boumali et al., Effect of the applied electric field on the thermal properties of the relativistic harmonic oscillator in one dimension, Ukrainian journal of physics. 68.4 (2023) 235, https://doi.org/10.15407/ujpe68.4.235

M. Demirci, R. Sever, Arbitrary, Arbitrary l state solutions of the Klein–Gordon equation with the Eckart plus a class of Yukawa potential and its non–relativistic thermal properties, Eur. Phys. J. Plus. 138 (2023) 409, https://doi.org/10.1140/epjp/s13360-023-04030-0

A. N. Ikot et al., Relativistic and non-relativistic thermal properties with bound and scattering states of the Klein-Gordon equation for Mobius square plus generalized Yukawa, Indian Journal of Physics. 97.10 (2023) 2871, https://doi.org/10.1007/s12648-023-02654-7

A. Arda, C. Tezcan, and R. Sever, Klein-Gordon and Dirac equations with thermodynamic quantities, Few-Body Systems. 57.2 (2016) 93, https://doi.org/10.1007/s00601-015-1031-7

A. Vilenkin, Cosmic strings, Physical Review D. 24.8 (1981) 2082, https://doi.org/10.1103/PhysRevD.24.2082

A. Vilenkin, A. Vilenkin, and E. P. S. Shellard, Cosmic strings and other topological defects. (Cambridge University Press, Cambridge, 1994)

Ch. Nayak et al., Non-Abelian anyons and topological quantum computation, Reviews of Modern Physics. 80.3 (2008) 1083, https://doi.org/10.1103/RevModPhys.80.1083

F. Ahmed, Effects of Cosmic String on Non-Relativistic Quantum Particles with Potential and Thermodynamic Properties, International Journal of Theoretical Physics. 62.7 (2023) 142, https://doi.org/10.1007/s10773-023-05397-7

D. J. Cirilo-Lombardo, and N. G. Sanchez, Coherent states of quantum spacetimes for black holes and de Sitter spacetime, Phys. Rev. D. 108.12 (2023) 126001, https://doi.org/10.1103/PhysRevD.108.126001

S. Zare, H. Hassanabadi, and G. Junker, Influences of Lorentz symmetry violation on charged Dirac fermions in cosmic dislocation space–time, General Relativity and Gravitation 54.7 (2022) 69, https://doi.org/10.1007/ s10714-022-02961-0

B. Boudjedaa, and F. Ahmed, Topological defects on solutions of non-relativistic equation for extended double ring-shaped potential, Communications in Theoretical Physics. 76 (2024) 085102, https://doi.org/10.1088/1572-9494/ad4c5e

F. Ahmed, Hellmann potential and topological effects on non– relativistic particles confined by Aharonov-Bohm flux field, Molecular Physics. 121.2 (2023) e2155596, https://doi.org/10.1080/00268976.2022.2155596

W. C. F. da Silva, K. Bakke, and R. L. L. Vitória, Non-relativistic quantum effects on the harmonic oscillator in a spacetime with a distortion of a vertical line into a vertical spiral, The European Physical Journal C. 79 (2019) 1, https://doi.org/10.1140/epjc/s10052-019-7166-9

M. Salazar-Ramírez, D. Ojeda-Guillen, A. Morales-González, and V. H. García-Ortega, Algebraic solution and coherent states for the Dirac oscillator interacting with a topological defect, Eur. Phys. J. Plus. 134 (2019) 8, https://doi.org/10.1140/epjp/i2019-12381-0

N. N. Lebedev, Special Functions and their Applications. (Dover Publications, New York, 1972)

L. Dantas, C. Furtado and A. L. S. Neto, Quantum ring in a rotating frame in the presence of a topological defect, Phys. Lett. A. 379 (2015) 11, https://doi.org/10.1016/j.physleta.2014.10.016

R. L. L. Vitória and K. Bakke, Rotating effects on the scalar field in the cosmic string spacetime, in the spacetime with space–like dislocation and in the spacetime with a spiral dislocation, The European Physical Journal C. 78 (2018) 1, https://doi.org/10.1140/epjc/s10052-018-5658-7

K. Bakke, Rotating effects on the Dirac oscillator in the cosmic string spacetime, General Relativity and Gravitation. 45 (2013) 1847, https://doi.org/10.1007/s10714-013-1561-6

A. V. D. M. Maia, and K. Bakke, Topological and rotating effects on the Dirac field in the spiral dislocation spacetime, The European Physical Journal C. 79 (2019) 1, https://doi.org/10.1140/epjc/s10052-019-7067-y

L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, Course of Theoretical Physics, vol. 2, 4th edn. (Elsevier, Oxford, 1980)

A. M. Perelomov, Generalized Coherent States and Their Applications. (Springer-Verlag, Berlin, 1986)

C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum Mechanics. (Wiley-VCH, Berlin, 1977)

Y. Gur, A. Mann, Radial coherent states-from the harmonic oscillator to the hydrogen atom, Phys. At. Nucl. 68 (2005) 1700, https://doi.org/10.1134/1.2121919

C. C. Gerry, J. Kiefer, Radial coherent states for the Coulomb problem, Phys. Rev. A. 37 (1988) 665, https://doi.org/10.1103/PhysRevA.37.665

A. Vourdas, SU(2) and SU(1, 1) phase states, Phys Rev. A. 41 (1990) 1653, https://doi.org/10.1103/PhysRevA. 41.1653

Downloads

Published

2025-05-01

How to Cite

[1]
M. Salazar Ramírez, R. D. Mota, M. R. Cordero-López, and S. de J. Guatemala Marín, “Thermodynamic properties and coherent states for the harmonic oscillator in cosmic string space-time with dislocation”, Rev. Mex. Fís., vol. 71, no. 3 May-Jun, pp. 031701 1–, May 2025.

Issue

Section

17 Thermodynamics and Statistical Physics