Exploiting the spatial extension of impurity for regulation of a few electrical properties of GaAs quantum dot: Role of noise
DOI:
https://doi.org/10.31349/RevMexFis.71.041601Keywords:
quantum dot; impurity spread; Gaussian white noise; electrical propertiesAbstract
The study uncovers the role of delicate interplay between spatial dispersion of impurity and Gaussian white noise on a few electrical properties of the doped GaAs quantum dot (QD). The electrical properties involve static dipole polarizability (SDP), dynamic dipole polarizability (DDP), quadrupole oscillator strength (QOS) and static quadrupole polarizability (SQP). The interplay between noise and the impurity spread depends on the pathway (additive/multiplicative) by which noise is applied. It has been found that, a gradual modulation of impurity spread, in conjunction with the mode of entry of noise, can effectively regulate the above electrical properties.
References
M. G. Barseghyan, V. N. Mughnetsyan, L. M. Pérez, A. A. Kirakosyan, and D. Laroze, Effect of the impurity on the Aharonov-Bohm oscillations and the intraband absorption in GaAs/Ga1−xAlxAs quantum ring under intense THz laser field, Physica E 111 (2019) 91, https://doi.org/10.1016/j.physe.2019.03.003
L. M. Pérez, N. Aghoutane, D. Laroze, P. Díaz, M. ElYadri, and El M. Feddi, Unveiling the role of donor impurity position on the electronic properties in strained type I and type II core/shell quantum dots under magnetic field, Materials 16 (2023) 6535, https://doi.org/10.3390/ma16196535
G. A. Mantashian, N. A. Zaqaryan, P. A. Mantashyan, H. A. Sarkisyan, S. Baskoutas, and D. B. Hayrapetyan, Linear and nonlinear optical absorption of Cdse/Cds core/shell quantum dots in the presence of donor impurity, Atoms 9 (2021) 75, https://doi.org/10.3390/atoms9040075
R. G. Toscano-Negrette, J. C. León-González, J. A. Vinasco, A. L. Morales, F. Koc, A. E. Kavruk, M. Sahin, M. E. MoraRamos, J. Sierra-Ortega, J. C. Martínez-Orozco, R. L. Restrepo, and C. A. Duque, Optical properties in a ZnS/CdS/ZnS core/shell/shell spherical quantum dot: Electric and magnetic field and donor impurity effects, Nanomaterials 13 (2023) 550, https://doi.org/10.3390/nano13030550
H. R. Rastegar Sedehi, R. Khordad, and H. Bahramiyan, Optical properties and diamagnetic susceptibility of a hexagonal quantum dot: impurity effect, Optical and Quantum Electron. 53 (2021) 264, https://doi.org/10.1007/s11082-021-02927-7
R. Khordad, H. R. Rastegar Sedehi, and H. Bahramiyan, Effects of impurity and cross-sectional shape on entropy of quantum wires, J. Computational Electron. 17 (2018) 551, https://doi.org/10.1007/s10825-018-1133-9
D. Bejan and C. Stan, Impurity and geometry effects on the optical rectification spectra of quasi-elliptical double quantum rings, Physica E 147 (2023) 115598, https://doi.org/10.1016/j.physe.2022.115598
D. Bejan and C. Stan, Electron spin and donor impurity effects on the absorption spectra of pseudo-elliptic quantum rings under magnetic field, Philosophical Magazine 101 (2021) 1871, https://doi.org/10.1080/14786435.2021.1939900
R. En-nadir, H. El-ghazi, M. Tihtih, W. Belaid, S. E. Zaki, I. Maouhoubi, and I. Zorkani, Analyzing the combined influences of external electric field, impurity-location, in-content, and QW’s number on donor-impurity binding energy in multiple quantum wells with finite squared potential, Optical and Quantum Electron. 55 (2023) 597, https://doi.org/10.1007/s11082-023-04893-8
A. Fakkahi, M. Kirak, and A. Sali, Effect of impurity position and electric field on the optical absorption coefficients and oscillator strength in spherical multilayer quantum dot, Eur. Phys. J. Plus 137 (2022) 1, https://doi.org/10.1140/epjp/s13360-022-03279-1
Md. K. Elsaid, A. Shaer, E. Hjaz, and M. H. Yahya, Impurity effects on the magnetization and magnetic susceptibility of an electron confined in a quantum ring under the presence of an external magnetic field, Chinese J. Phys. 64 (2020) 9, https://doi.org/10.1016/j.cjph.2020.01.002
A. Yaseen, A. Shaer, and Md. K. ElSaid, The magnetic properties of GaAs parabolic quantum dot in the presence of donor impurity, magnetic and electric fields, Chinese J. Phys. 60 (2019) 598, https://doi.org/10.1016/j.cjph.2019.05.031
O. Akankan, I. Erdogan, A. I. Mese, E. Cicek, and H. Akbas, The effects of geometrical shape and impurity position on the self-polarization of a donor impurity in an infinite GaAs/AlAs tetragonal quantum dot, Indian J. Phys. 95 (2021) 1341, https://doi.org/10.1007/s12648-020-01813-4
A. I. Mese, E. Cicek, I. Erdogan, O. Akankan, and H. Akbas, The effect of dielectric constant on binding energy and impurity self-polarization in a GaAs-Ga1−xAlxAs spherical quantum dot, Indian J. Phys. 91 (2017) 263, https://doi.org/10.1007/s12648-016-0921-y
M. Tshipa and G. K. Nkoni, Donor binding energies in a spherical core-shell quantum dot: parabolic and shifted parabolic shell potentials, Indian J. Phys. 94 (2020) 633, https://doi.org/10.1007/s12648-019-01513-8
S. Ghajarpour-Nobandegani and M. J. Karimi, Effects of hydrogenic impurity and external fields on the optical absorption in a ring-shaped elliptical quantum dot, Optical Mater. 82 (2018) 75, https://doi.org/10.1016/j.optmat.2018.05.045
M. K. Bahar and P. Bas¸er, Combined effects of thermodynamic factors and external fields for nonlinear optical processes of deformed Mathieu quantum dot containing central impurity, Phys. Lett. A 483 (2023) 129046, https://doi.org/10.1016/j.physleta.2023.129046
M. Chnafi, O. Mommadi, A. El Moussaouy, S. Chouef, R. Boussetta, M. Hbibi, C. A. Duque, and F. Falyouni, Optoelectronic properties of an off-center donor atom in a wedge-shaped quantum dot under the combined effect of electric and magnetic fields, Optik 310 (2024) 171881, https://doi.org/10.1016/j.ijleo.2024.171881
S. Chouef, O. Mommadi, R. Boussetta, M. Hbibi, A. El Moussaouy, M. S¸ahin, F. Falyouni, and C. A. Duque, Effects of surface curvature and electric field on electronic and optical properties of an off-center hydrogenic donor impurity in 2D nanostructures, Eur. Phys. J. Plus 139 (2024) 381, https://doi.org/10.1140/epjp/s13360-024-05164-5
R. En-nadir, H. El-Ghazi, M. Tihtih, S. E. Zaki, W. Belaid, I. Maouhoubi, and I. Zorkani, Exploring the electronic properties of shallow donor impurities in modified T -shaped potential: Effects of applied electric field, parabolicity, compositions, and thickness, Eur. Phys. J. B 96 (2023) 78, https://doi.org/10.1140/epjb/s10051-023-00539-6
G. L. García and L. Meza-Montes, Effect of magnetic field and impurities in InAs/GaAs and GaN/AlN self-assembled quantum dots, Rev. Mex. Fis. 65 (2019) 231, https://doi.org/10.31349/revmexfis.65.231
F. O. Oketch and H. O. Oyoko, A theoretical study of the effects of uniaxial stress and spatial dielectric functions on the density of states of shallow donor impurities in a GaAs quantum well dot of circular geometry, Rev. Mex. Fis. 70 (2024) 030501 1, https://doi.org/10.31349/RevMexFis.70.030501
F. O. Oketch and H. O. Oyoko, A theoretical study of variation of photoionization cross section of donor impurities in a GaAs quantum dot of cylindrical geometry with incident photon frequency, donor location along the dot axis and applied uniaxial stress, Rev. Mex. Fis. 66 (2020) 35, https://doi.org/10.31349/revmexfis.66.35
R. V. H. Hahn, F. Mora-Rey, R. L. Restrepo, A. L. Morales, J. Montoya-Sanchez, G. Eramo, M. G. Barseghyan, A. Ed- ´ Dahmouny, J. A. Vinasco, D. A. Duque, and C. A. Duque, Electronic and optical properties of tetrapod quantum dots under applied electric and magnetic fields, Eur. Phys. J. Plus 139 (2024) 311, https://doi.org/10.1140/epjp/s13360-024-05089-z
A. Manaselyan, M. G. Barseghyan, A. A. Kirakosyan, D. Laroze, and C. A. Duque, Effects of applied lateral electric field and hydrostatic pressure on the intraband optical transitions in a GaAs/Ga1−xAlxAs quantum ring, Physica E 60 (2014) 95, https://doi.org/10.1016/j.physe.2014.02.015
M. Sayrac, W. Belhadj, H. Dakhlaoui, and F. Ungan, Influence of structural variables and external perturbations on the nonlinear optical rectification, second, and third-harmonic generation in the InP/InGaAs triple quantum well structure, Eur. Phys. J. Plus 138 (2023) 1013, https://doi.org/10.1140/epjp/s13360-023-04630-w
A. T. Tuzemen, E. B. Al, H. Dakhlaoui, and F. Ungan, Effects of external electric and magnetic field on the nonlinear optical rectification, second, and third-harmonic generations in GaAs/AlGaAs asymmetric triple quantum well, Eur. Phys. J. Plus 138 (2023) 668, https://doi.org/10.1140/epjp/s13360-023-04301-w
M. B. Yücel, S. Sakiroglu, H. Sari, C. A. Duque, and E. Kasapoglu, Influence of external fields on the exciton binding energy and interband absorption in a double inverse parabolic quantum well, Physica E 144 (2022) 115433, https://doi.org/10.1016/j.physe.2022.115433
E. Kasapoglu, M. B. Yücel, S. Sakiroglu, H. Sari, and C. A. Duque, Optical properties of cylindrical quantum dots with hyperbolic-type axial potential under applied electric field, Nanomaterials 12 (2022) 3367, https://doi.org/10.3390/nano12193367
Z. Zeng, C. S. Garoufalis, and S. Baskoutas, Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dotquantum-ring system, Phys. Lett. A 378 (2014) 2713, https://doi.org/10.1016/j.physleta.2014.07.036
A. Fakkahi, M. Kirak, M. Jaouane, A. Sali, A. Ed-Dahmouny, K. El-Bakkari, and R. Arraoui, The nonlinear optical rectification and second harmonic generation of a single electron confined in a multilayer spherical quantum dot, Optical and Quantum Electron. 55 (2023) 476, https://doi.org/10.1007/s11082-023-04730-y
Y. Yakar, B. Çakır, C. Demir, and A. Özmen, Energy states, oscillator strengths and polarizabilities of many electron atoms confined by an impenetrable spherical cavity, Int. J. Quantum Chem. 121 (2021) e26658, https://doi.org/10.1002/qua.26658
B. Vaseghi, M. Sadri, G. Rezaei, and A. Gharaati, Optical rectification and third harmonic generation of spherical quantum dots: Controlling via external factors, Physica B 457 (2015) 212, https://doi.org/10.1016/j.physb.2014.10.020
B. Vaseghi, G Rezaei, and T Sajadi, Optical properties of parabolic quantum dots with dressed impurity: combined effects of pressure, temperature and laser intensity, Physica B 456 (2015) (2015) 171, https://doi.org/10.1016/j.physb.2014.08.034
S. Taghipour, G. Rezaei, and A. Gharaati, Electromagnetically induced transparency in a spherical Gaussian quantum dot, Eur. Phys. J. B 95 (2022) 141, https://doi.org/10.1140/epjb/s10051-022-00409-7
V. Ashrafi-Dalkhani, S. Ghajarpour-Nobandegani, and M. J. Karimi, Effects of spin-orbit interactions, external fields and eccentricity on the optical absorption of an elliptical quantum ring, Eur. Phys. J. B 92 (2019) 1, https://doi.org/10.1140/epjb/e2018-90691-5
L. Máthé, C. P. Onyenegecha, A-A. Farcaş, L-M. Pioraş-Ţimbolmaş, M. Solaimani, and H. Hassanabadi, Linear and nonlinear optical properties in spherical quantum dots: Inversely quadratic Hellmann potential, Phys. Lett. A 397 (2021) 127262, https://doi.org/10.1016/j.physleta.2021.127262
M. C. Onyeaju, J. O. A. Idiodi, A. N. Ikot, M. Solaimani, and H. Hassanabadi, Linear and nonlinear optical properties in spherical quantum dots: Manning-Rosen potential, J. Optics 46 (2017) 254, https://doi.org/10.1007/s12596-016-0359-9
V. U. Unal, M. Tomak, and E. Aksahin, The effect of Coulomb interaction on optical absorption of a quantum well wire, Physica B 680 (2024) 415799, https://doi.org/10.1016/j.physb.2024.415799
V. U. Unal, M. Tomak, E. Aksahin, and O. Zorlu, Nonlinear Optical Properties of Low Dimensional Quantum Systems in Progress in Nanoscale and Low-Dimensional Materials and Devices: Properties, Synthesis, Characterization, Modelling and Applications, (Springer, 2022) pp. 709-729. https://doi.org/10.1007/978-3-030-93460-6 25
M. K. Bahar and P. Bas¸er, The second, third harmonic generations and nonlinear optical rectification of the Mathieu quantum dot with the external electric, magnetic and laser field, Physica Scripta 665 (2023) 415042, https://doi.org/10.1016/j.physb.2023.415042
A. E. Kavruk, M. Sahin, and Ü. Atav, A detailed investigation of electronic and intersubband optical properties of AlxGa1−xAs/Al0.3Ga0.7As/Aly Ga1−yAs/Al0.3Ga0.7As multi-shell quantum dots, J. Phys. D:Appl. Phys. 47 (2014) 295302, https://doi.org/10.1088/0022-3727/47/29/295302
A. Haghighatzadeh, A. Attarzadeh, A. S. Durmuslar, E. B. Al, and F. Ungan, Modeling of electronic spectra and optical responses of a semiconductor AlGaAs/GaAs quantum well with three-step barriers: the role of external perturbations and impurity, Eur. Phys. J. Plus 139 (2024) 353, https://doi.org/10.1140/epjp/s13360-024-05165-4
D. Makhlouf, M. Choubani, F. Saidi, and H. Maaref, Applied electric and magnetic fields effects on the nonlinear optical rectification and the carrier’s transition lifetime in InAs/GaAs core/shell quantum dot, Mater. Chem. Phys. 267 (2021) 124660, https://doi.org/10.1016/j.matchemphys.2021.124660
M. Servatkhah and R. Pourmand, Optical properties of a twodimensional GaAs quantum dot under strain and magnetic field, Eur. Phys. J. Plus 135 (2020) 754, https://doi.org/10.1140/epjp/s13360-020-00773-2
P. Hosseinpour, Kerr nonlinearity in asymmetric disc-like quantum dot and its controllability, Physica B 613 (2021) 412973, https://doi.org/10.1016/j.physb.2021.412973
F. Rahimi, T. Ghaffary, Y. Naimi, and H. Khajehazad, Effect of magnetic field on energy states and optical properties of quantum dots and quantum antidots, Optical and Quantum Electronics 53 (2021) 1, https://doi.org/10.1007/s11082-020-02695-w
K. A. Rodríguez-Magdaleno, F. M. Nava-Maldonado, E. Kasapoglu, M. E. Mora-Ramos, F. Ungan, and J. C. Martínez-Orozco, Nonlinear absorption coefficient and relative refractive index change for Konwent potential quantum well as a function of intense laser field effect, Physica E 148 (2023) 115618, https://doi.org/10.1016/j.physe.2022.115618
N. Amin and A. J. Peter, Role of surrounding dielectric matrices on the nonlinear properties of group II-VI core/shell dot in the presence of electric field, Micro and Nanostructures 185 (2024) 207728, https://doi.org/10.1016/j.micrna.2023.207728
E. B. Al, A. J. Peter, M. E. Mora-Ramos, and F. Ungan, Theoretical investigation of nonlinear optical properties of Mathieu quantum well, Eur. Phys. J. Plus 138 (2023) 49, https://doi.org/10.1140/epjp/s13360-023-03678-y
Md. El-Yadri, J. El Hamdaoui, N. Aghoutane, L. M. Pérez, S. Baskoutas, D. Laroze, P. Díaz, and El. M. Feddi, Optoelectronic properties of a cylindrical core/shell nanowire: Effect of quantum confinement and magnetic field, Nanomaterials 13 (2023) 1334, https://doi.org/10.3390/nano13081334
C. S. Garoufalis, D. B. Hayrapetyan, H. Sarkisyan, P. A. Mantashyan, Z. Zeng, I. Galanakis, G. Bester, T. Steenbock, and S. Baskoutas, Optical gain and entanglement through dielectric confinement and electric field in InP quantum dots, Nanoscale 16 (2024) 8447, https://doi.org/10.1039/D3NR06679G
M. Choubani, H. Maaref, and F. Saidi, Linear, third-order nonlinear and total absorption coefficients of a coupled InAs/GaAs lens-shaped core/shell quantum dots in terahertz region, Eur. Phys. J. Plus 137 (2022) 265, https://doi.org/10.1140/epjp/s13360-022-02409-z
R. L. Restrepo, E. Kasapoglu, S. Sakiroglu, F. Ungan, A. L. Morales, and C. A. Duque, Second and third harmonic generation associated to infrared transitions in a Morse quantum well under applied electric and magnetic fields, Infrared Physics and Technology 85 (2017) 147, https://doi.org/10.1016/j.infrared.2017.06.005
U. Yesilgul et al., Linear and nonlinear optical properties in an asymmetric double quantum well under intense laser field: Effects of applied electric and magnetic fields, Optical Materials 58 (2016) 107, https://doi.org/10.1016/j.optmat.2016.03.043
C. A. Duque, E. Kasapoglu, S. Sakiroglu, H. Sari, and I. Sökmen, Intense laser effects on donor impurity in a cylindrical single and vertically coupled quantum dots under combined effects of hydrostatic pressure and applied electric field, Applied Surf. Sci. 256 (2010) 7406, https://doi.org/10.1016/j.apsusc.2010.05.081
R. Dutt, A. Mukherjee, and Y. P. Varshni, Dipole plarizability of hydrogen atom at high pressure, Phys. Lett. A 280 (2001) 318, https://doi.org/10.1016/S0375-9601(01) 00067-6
S. A. Ndengué, O. Motapon, R. L. M. Moleno, and A. J. Etindele, Electronic structure of a cylindrically confined hydrogen atom by the B-splines method: energy levels and dipole polarizability, J. Phys. B: Atom. Mol. Opt. 47 (2014) 015002, https://doi.org/10.1088/0953-4075/47/1/015002
B. Çakir, Y. Yakar, and A. Özmen, Calculation of oscillator strength and the effects of electric field on energy states, static and dynamic polarizabilities of the confined hydrogen atom, Optics Commun. 311 (2013) 222, https://doi.org/10.1016/j.optcom.2013.08.015
O. Motapon, S. A. Ndengué, and K. D. Sen, Static and dynamic dipole polarizabilities and electron density at origin: Ground and excited states of hydrogen atom confined in multiwalled fullerenes, Int. J. Quantum. Chem. 111 (2011) 4425, https://doi.org/10.1002/qua.22996
X. Tian, C. Zhuang-Qi, O. Yong-Cheng, S. Qi-Shun, and Z. Guo-Long, Critical radius and dipole polarizability for a confined system, Chinese Phys. 15 (2006) 1172, https://doi.org/10.1088/1009-1963/15/6/008
H. E. Montgomery, Dynamic dipole polarizabilities of the confined hydrogen atom, Chem. Phys. Lett. 352 (2002) 529, https://doi.org/10.1016/S0009-2614(01)01503-2
S. Cohen, S. I. Themelis, and K. D. Sen, Dynamic dipole polarizabilities of the ground and excited states of confined hydrogen atom computed by means of a mapped Fourier grid method, Int. J. Quantum. Chem. 108 (2008) (2008) 351, https://doi.org/10.1002/qua.21459
H. E. Montgomery Jr. and K. D. Sen, Dipole polarizabilities for a hydrogen atom confined in a penetrable sphere, Phys. Lett. A 376 (2012) 1992, https://doi.org/10.1016/j.physleta.2012.04.056
S. Lumb, S. Lumb, and V. Prasad, Static polarizability of an atom confined in Gaussian potential, Eur. Phys. J. Plus 130 (2015) (2015) 149, https://doi.org/10.1140/epjp/i2015-15149-6
N. M. Cann and A. J. Thakkar, Quadrupole oscillator strengths for the helium isoelectronic sequence: n 1S − m1D, n 3S − m3D, n 1P − m1P, and n 3P − m3P transitions with n < 7 and m < 7, J. Phys. B: At. Mol. Opt. Phys. 35 (2002) 421, https://doi.org/10.1088/0953-4075/35/2/317
Y. Yakar, B. Çakir, and A. Özmen, Dipole and quadrupole polarizabilities and oscillator strengths of spherical quantum dot, Chem. Phys. 513 (2018) 213, https://doi.org/10.1016/j.chemphys.2018.07.049
A. Özmen, Y. Yakar, B. Çakir, and Ü. Atav, Computation of the oscillator strength and absorption coefficients for the intersubband transitions of the spherical quantum dot, Optics Commun. 282 (2009) 3999, https://doi.org/10.1016/j.optcom.2009.06.043
L. J. Stevanović, Oscillator strengths of the transitions in a spherically confined hydrogen atom, J. Phys. B: At. Mol. Opt. Phys. 43 (2010) 165002, https://doi.org/10.1088/0953-4075/43/16/165002
M. Das, Transition energies and polarizabilities of hydrogen like ions in plasma, Physics of Plasmas 19 (2012) 092707, https://doi.org/10.1063/1.4754716
K. D. Sen, B. Mayer, P. C. Schmidt, J. Garza, R. Vargas, and A. Vela, Static dipole and quadrupole polarizability of confined hydrogen atom with Z = N/3(N = 1 − 5), Int. J. Quantum Chem. 90 (2002) 491, https://doi.org/10.1002/qua.946
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd Edn., Vol. 1 of Fortran Numerical Recipes (Press Syndicate of the University of Cambridge, 1997)
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 B. Bhakti, M. Ghosh

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.