Optical soliton and travelling wave solutions for the wick-type stochastic Fokas-Lenells equation

Authors

  • Esma Ulutaş Karadeniz Teknik Üniversitesi

DOI:

https://doi.org/10.31349/RevMexFis.71.041302

Keywords:

Optical solitons, travelling wave solutions, Fokas-Lenells equation, Wick product, Hermite transform

Abstract

In this study, we investigate the perturbed Fokas-Lenells equation with conformable fractional derivatives in the presence of white noise, employing two advanced methodologies. The analysis utilizes Hermite and inverse Hermite transformations within the framework of white noise theory to derive solutions to the model. We also construct traveling wave solutions, optical soliton solutions, and their respective stochastic counterparts.

References

He, J., Xu, S., Porsezian, K.: Rogue waves of the Fokas–Lenells equation. J. Phys. Soc. Jpn.(2012).

https://doi.org/10.1143/JPSJ.81.124007

Du, Z., Meng, G.Q., Du, X.X.: Localized waves and breather-to-soliton conversions of the coupled Fokas–Lenells system. Chaos,

Solitons & Fract. (2021). https://doi.org/10.1016/j.chaos.2021.111507

Triki, H., Wazwaz, A.M.: Combined optical solitary waves of the Fokas-Lenells equation. Waves Random Complex Medium (2017).

https://doi.org/10.1080/17455030.2017.1285449

Liu, F., Zhou,C.C., Lü, X., Xu, H.: Dynamic behaviors of optical solitons for Fokas-Lenells equation in optical fiber. Optik (2020).

https://doi.org/10.1016/j.ijleo.2020.165237

Yıldırım, Y., Biswas, A., Dakova, A., Khan, S., Moshokoa, S.P., Alzahrani, A.K., Belici, M.R.: Cubic–quartic

optical soliton perturbation with Fokas–Lenells equation by sine–Gordon equation approach. Results in Phys. (2021)

https://doi.org/10.1016/j.rinp.2021.104409

Holden, H., Øksendal, B., Ubøe, J., Zhang, T.: Stochastic partial differential equations: A Modeling, White Noise Functional Approach.

Birkhäuser, Basel (1996)

Baronio, F., Chen, S., Grelu, Ph., Wabnitz, S., Conforti, M.: Baseband modulation instability as the origin of rogue waves. Phys. Rev.

A. (2015). https://doi.org/10.1103/PhysRevA.91.033804

Chen, S. Ye, Y., Soto-Crespo, J.M., Grelu, Ph., Baroni, F.: Peregrine solitons beyond the threefold limit and their two-soliton interactions.

Phys. Rev. Lett. (2018). https://doi.org/10.1103/PhysRevLett.121.104101

Han, H.B., Li, H.J., Dai, C.Q.: Wick-type stochastic multi-soliton and soliton molecule solutions in the framework of nonlinear

Schrödinger equation. Appl. Math. Lett. (2021). https://doi.org/10.1016/j.aml.2021.107302

Chen, B., Xie, Y.: Periodic-like solutions of variable coefficient and Wick-type stochastic NLS equations. J. Comput. Appl. Math.

(2007). https://doi.org/10.1016/j.cam.2006.04.002

Yulin, Y. L., Yao, Z. Z.: Stochastic exact solutions of the Wick-type stochastic NLS equation. Appl. Math. and Comput. (2014).

https://doi.org/10.1016/j.amc.2014.09.083

Olivera, C., Tudor, C.A.: Absolute continuity of the solution to the stochastic Burgers equation. Chaos Solitons & Fractals (2021).

https://doi.org/10.1016/j.chaos.2021.111635

Xiao, G.,Wang, J.R., O’Regan, D.: Existence, uniqueness and continuous dependence of solutions to conformable stochastic differential

equations. Chaos, Solitons & Fract. (2020). https://doi.org/10.1016/j.chaos.2020.110269

Kim, H.,Sakthivel, R., Debbouche, A., Torres, D.F.M.: Traveling wave solutions of some important Wick-type fractional stochastic

nonlinear partial differential equations. Chaos, Solitons & Fract. (2020). https://doi.org/10.1016/j.chaos.2019.109542

He, T., Wang, Y.Y.: Dark-multi-soliton and soliton molecule solutions of stochastic nonlinear Schrödinger equation in the white noise

space. Appl. Math. Lett. (2021). https://doi.org/10.1016/j.aml.2021.107405

Ulutas E.: Traveling wave and optical soliton solutions of theWick-type stochastic NLSE with conformable derivatives, Chaos, Solitons

& Fract. (2021). https://doi.org/10.1016/j.chaos.2021.111052

Choi, J.H., Kim, H.: The Wick-type explicit solutions of the nonlinear stochastic Wick-type fractional Gardner equation. Results in

Phys.(2021). https://doi.org/10.1016/j.rinp.2021.104886

Khalil, R., Horani, M.A., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J Comput Appl Math. (2014).

https://doi.org/10.1016/j.cam.2014.01.002

Downloads

Published

2025-07-01

How to Cite

[1]
E. Ulutaş, “Optical soliton and travelling wave solutions for the wick-type stochastic Fokas-Lenells equation”, Rev. Mex. Fís., vol. 71, no. 4 Jul-Aug, pp. 041302 1–, Jul. 2025.