Structural and optoelectronic properties of rock salt magnesium cadmium oxygen ternary alloys: For ultraviolet applications

Authors

  • N. Hassani Sidi Bel Abbs Djillali Liabes University
  • M. Benchehima University of Sciences and Technology of Oran
  • H. Abid University Djillali Liabes of Sidi Bel Abbes

DOI:

https://doi.org/10.31349/RevMexFis.71.041006

Keywords:

Cadmium oxide, Magnesium oxide, Super cell; Complex dielectric function; Optical conductivity; WIEN2k simulation software;

Abstract

In this work, we present a comprehensive investigation regarding the physical properties of MgxCd1-xO ternary alloys for different concentrations (0≤x≤1), in rock salt phase. These properties, including structural, electronic, and optical properties, were studied using the full-potential linearized augmented plane wave (FP-LAPW) method based on the density functional theory (DFT) with the Wien2k code. The structural parameters of RS MgxCd1-xO are studied in detail as a function of Mg concentration using the generalized gradient approximation (GGA–PBEsol). The calculated structural parameters of both binaries are in good agreement with their corresponding theoretical and experimental data. The results show that the value of the lattice parameter of RS MgxCd1-xO decreases almost linearly with the increasing Mg concentration and exhibits a small deviation from the linear composition dependence (LCD). Both approximations (LDA) and (TB-mBJ) were used to explore the electronic properties. It is found that the increasing Mg concentration leads to increasing energy band gap. Our obtained results demonstrate that the RS CdO has an indirect band gaps and RS MgO has a direct band gap, while RS MgxCd1-xO ternaries (0.125 ≤ x ≤ 0.875) exhibit an indirect band gap semiconductors. Additionally, the linear optical properties including, complex dielectric function, complex refractive index, absorption coefficient, optical conductivity and absorption coefficient, are calculated and discussed in detail. Our obtained results are discussed in detail and compared with existing data in the literature. These results confirm that the RS MgxCd1-xO ternary alloys are a promising candidate for ultraviolet photo electronic devices.

References

D. Liu, H. Zeng, and R. Sa, First-principles study of physical properties of Zn1−xCdxTe, Zn1−xHgxTe, and Cd1−xHg−xTe ternary alloys, Chemical Physics, 565 (2023) 111755, https://doi.org/10.1016/j.chemphys.2022.111755

S.-G. Lee, and K.-J. Chang, First-principles study of the structural properties of MgS-, MgSe-, ZnS-, and ZnSe-based superlattices, Physical Review B, 52 (1995) 1918, https://doi.org/10.1103/PhysRevB.52.1918

K. Li, X. Wang, H. Zeng, R. Sa, and D. Liu, Firstprinciples study of the structural, electronic and optical properties of Zn1−xHgxSe Physica B: Condensed Matter, 629 (2022) 413677, https://doi.org/10.1016/j.physb.2022.413677

H. Slimani, H. Abid, and M. Benchehima, Prediction of optoelectronic properties for BexZnyCd1−x−ySe quaternary alloys: First-principles study, Optik, 198 (2019) 163288, https://doi.org/10.1016/j.ijleo.2019.163288

K. Benchikh, H. Abid, and M. Benchehima, Electronic and optical properties of ternary alloys ZnxCd1−xS, ZnxCd1−xSe, ZnSxSe1−x, MgxZn1−xSe, Mater. Sci.-Poland, 35 (2017) 32, https://doi.org/10.1515/msp-2017-0005

W.U. Huynh, J.J. Dittmer, and A.P. Alivisatos, Hybrid Nanorod-Polymer Solar Cells Science, 295 (2002) 2425-2427, DOI:10.1126/science.1069156

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, Efficient Near-Infrared Polymer Nanocrystal Light-Emitting Diodes, Science, 295 (2002) 1506-1508, https://doi.org/10.1126/science.1068153

B. Dabbousi, M. Bawendi, O. Onitsuka, and M. Rubner, Electroluminescence from CdSe quantum-dot/polymer composites, Applied Physics Letters, 66 (1995) 1316, https://doi.org/10.1016/j.ijleo.2019.163288

B. Amin et al., Generalized gradient calculations of structural, electronic and optical properties of MgxCd1−xO oxides, Journal of alloys and compounds, 493 (2010) 212-218, https://doi.org/10.1016/j.jallcom.2009.12.057

S. Djaili, M. Hachi, B. Lagoun, T. Smain, A. Amor, and K. Souleh, First-principles study of electronic and optical properties of CdxMg1−xO alloys, TB-mBJ calculations, Optical and Quantum Electronics, 55 (2023) 297, https://doi.org/10.1007/s11082-023-04612-3

B. Amrani, R. Ahmed, and F.E.H. Hassan, Structural, electronic and thermodynamic properties of wide band gap MgxZn1−xO alloy, Computational Materials Science, 40 (2007) 66-72, https://doi.org/10.1016/j.commatsci.2006.11.001

R. Whited, C.J. Flaten, and W. Walker, Exciton thermoreflectance of MgO and CaO, Solid state communications, 13 (1973) 1903-1905, https://doi.org/10.1016/0038-1098(73)90754-0

D. Roessler and W. Walker, Electronic Spectrum and Ultraviolet Optical Properties of Crystalline MgO, Physical Review, 159 (1967) 733, https://doi.org/10.1103/PhysRev.159.733

J. Kocka and C. Konak, The Structure of the Indirect Absorption Edge of CdO, physica status solidi (b), 43 (1971) 731-738, https://doi.org/10.1002/pssb.2220430234

S. Adachi, Properties of semiconductor alloys: group-IV, III-V and II-VI semiconductors, (John Wiley & Sons, 2009)

L. He, M. Tang, M. Zeng, X. Zhou, W. Zhu, and F. Liu, First-principles calculations of optical properties of perfect and defective MgO crystals at high pressure, Physica B: Condensed Matter, 410 (2013) 137-140, https://doi.org/10.1016/j.physb.2012.10.038

J. Li, X. Zhou, and J. Li, A time-resolved single-pass technique for measuring optical absorption coefficients of window materials under 100 GPa shock pressures, Review of Scientific Instruments, 79 (2008), https://doi.org/10.1063/1.3046279

J.H. Lee et al., Hydration behavior of MgO single crystals and thin films, Journal of materials research, 18 (2003) 2895-2903, https://doi.org/10.1557/JMR.2003.0404

H. Kohler, Optical properties and energy-band structure of CdO, Solid state communications, 11 (1972) 1687- 1690, https://doi.org/10.1016/0038-1098(72)90772-7

M. Labidi, S. Labidi, F.E.H. Hassan, M. Boudjendlia, and R. Bensalem, Structural, electronic and thermodynamic properties of SrxCd1−xO: A first-principles study, Materials Science in Semiconductor Processing, 16 (2013) 1853-1858. https://doi.org/10.1016/j.mssp.2013.07.011

F. Henari and A. Dakhel, Linear and nonlinear optical properties of hydrogenated CdO thin films, Laser physics, 18 (2008) 1557-1561, https://doi.org/10.1134/S1054660X08120281

D.O. Scanlon, A. Walsh, B.J. Morgan, M. Nolan, J. Fearon, and G.W. Watson, Surface Sensitivity in Lithium-Doping of MgO: A Density Functional Theory Study with Correction for onSite Coulomb Interactions, The Journal of Physical Chemistry C, 111 (2007) 7971-7979, https://doi.org/10.1021/jp070200y

U. Paliwal, T. Bredow, and K. Joshi, Structural properties of MgxCd1−xO alloys, AIP Conference Proceedings, American Institute of Physics, 1447 (2012) 1037, https://doi.org/10.1063/1.4710360

K. Joshi, U. Paliwal, K. Galav, D. Trivedi, and T. Bredow, Study of MgxCd1−xO applying density functional theory: Stability, structural phase transition and electronic properties, Journal of Solid State Chemistry, 204 (2013) 367-372, https://doi.org/10.1016/j.jssc.2013.06.015

Z. Wu, R.E. Cohen, More accurate generalized gradient approximation for solids, Physical Review B, 73 (2006) 235116, https://doi.org/10.1103/PhysRevB.73.235116

J. Munir et al., Spin-polarized electromagnetic and optical response of full-Heusler Co2VZ (Z=Al, Be) alloys for spintronic application, The European Physical Journal Plus, 136 (2021) 1-18, https://doi.org/10.1140/epjp/s13360-021-01968-x

D. Koelling and B. Harmon, A technique for relativistic spinpolarised calculations, Journal of Physics C: Solid State Physics, 10 (1977) 3107, https://doi.org/10.1088/0022-3719/10/16/019

J.P. Perdew et al., Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces, Physical Review Letters, 100 (2008) 136406, https://doi.org/10.1103/PhysRevLett.100.136406

W. Kohn, and L. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. A, 140 (1965) 1133, https://doi.org/10.1103/PhysRev.140.A1133

D. Ceperley and B. Alder, Ground State of the Electron Gas by a Stochastic Method, Rev. Lett, 45 (1980) 566, https://doi.org/10.1103/PhysRevLett.45.566

X. Li et al., First-principles investigations of structural, electronic, optical and thermodynamic properties of CdxMg1−xS alloys, Computational Materials Science, 101 (2015) 242-247, https://doi.org/10.1016/j.commatsci.2015.02.002

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. B, 136 (1964) 864, https://doi.org/10.1103/PhysRev.136.B864

P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, An Augmented Plane Wave+ Local Orbitals Program for Calculating Crystal Properties (Institut Für Physikalische und Theoretische Chemie: Vienna, Austria, 2001)

A. Zunger, S.-H. Wei, L. Ferreira, and J.E. Bernard, Special quasirandom structures, Physical review letters, 65 (1990) 353, https://doi.org/10.1103/PhysRevLett.65.353

I. Vurgaftman, J. Meyer, and L.R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys, Journal of applied physics, 89 (2001) 5815-5875, https://doi.org/10.1063/1.1368156

F. Murnaghan, The Compressibility of Media under Extreme Pressures, PNAS, 30 (1944) 244, https://doi.org/10.1073/pnas.30.9.244

J. Zhang, Room-temperature compressibilities of MnO and CdO: further examination of the role of cation type in bulk modulus systematics, Physics and Chemistry of Minerals, 26 (1999) 644-648, https://doi.org/10.1007/s002690050229

H. Mao and P. Bell, Equations of state of MgO and ε Fe under static pressure conditions, Journal of Geophysical Research: Solid Earth, 84 (1979) 4533-4536, https://doi.org/10.1029/JB084iB09p04533

M.L. Cohen, Calculation of bulk moduli of diamond and zincblende solids, Physical Review B, 32 (1985) 7988, https://doi.org/10.1103/PhysRevB.32.7988

S. Hosseini, T. Movlarooy and A. Kompany, First-principle calculations of the cohesive energy and the electronic properties of PbTiO3, Physica B: Condensed Matter, 391 (2007) 316-321, https://doi.org/10.1016/j.physb.2006.10.013

F. Tran and P. Blaha, Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential, Physical review letters, 102 (2009) 226401, https://doi.org/10.1103/PhysRevLett.102.226401

M. Benchehima, M.H. Hachemi and H. Abid, Theoretical studies of optoelectronic properties of AlP1−xBix ternaries: Promising light sources for fiber optic communications, Radiation Physics and Chemistry, 202 (2023) 110591, https://doi.org/10.1016/j.radphyschem.2022.110591

M. Benchehima and H. Abid, Electronic and optical properties of AlxGayIn1−x−yAs quaternary alloys with and without relaxation lattice matched to InP for laser applications: First-principles study, Optik, 127 (2016) 6541-6558, https://doi.org/10.1016/j.ijleo.2016.04.092

M. Tehami, M. Benchehima, D. Ameur and H. Abid, First-principle study of the optoelectronic properties of GaxIn1−xBiyP1−y quaternary alloys lattice-matched to InP for telecommunication applications, Canadian Journal of Physics, 101 (2023) 471-483, https://doi.org/10.1139/cjp-2022-0331

Q. Rafiq et al., Investigation of structural, electrical, magnetic, and optical properties of Cu (111) and the impact of Ag adatoms adsorption: A density functional theory study, International Journal of Electrochemical Science, 19 (2024) 100603, https://doi.org/10.1016/j.ijoes.2024.100603

K. Benchikh, M. Benchehima, H. Abid, and A. Chaouche, Prediction of electronic and optical properties for Zn1−xCdxSeyTe1−y quaternary alloys: Firstprinciples study, Rev. Mex Fis. 67 (2021), https://doi.org/10.31349/revmexfis.67.041001

M. Benchehima and H. Abid, Effects of phosphorus incorporation on the structural and optoelectronic properties of BSb binary compound: A first principle investigation, Computational Condensed Matter, 14 (2018) 114-124, https://doi.org/10.1016/j.cocom.2018.01.011

R. Abt, C. Ambrosch-Draxl and P. Knoll, Optical response of high temperature superconductors by full potential LAPW band structure calculations, Physica B: Condensed Matter, 194 (1994) 1451, https://doi.org/10.1016/0921-4526(94)91225-4

C. Ambrosch-Draxl and J.O. Sofo, Linear optical properties of solids within the full-potential linearized augmented planewave method, Computer physics communications, 175 (2006) 1-14, https://doi.org/10.1016/j.cpc.2006.03.005

Downloads

Published

2025-07-01

How to Cite

[1]
N. . HASSANI, M. Benchehima, and H. ABID, “Structural and optoelectronic properties of rock salt magnesium cadmium oxygen ternary alloys: For ultraviolet applications”, Rev. Mex. Fís., vol. 71, no. 4 Jul-Aug, pp. 041006 1–, Jul. 2025.