Cross section analysis of neutron-light nuclei systems using Modified Pöschl–Teller potential
DOI:
https://doi.org/10.31349/RevMexFis.71.051202Keywords:
Modified Pöschl-Teller potential; jost function; scattering phase shifts; scattering cross section; (n — d) and (n — He3) systemsAbstract
The regular and irregular/Jost solutions of the Schrödinger equation with the Modified Pöschl–Teller potential are presented by implementing the differential equation technique to the problem. In this work the said potential is parameterized for nuclear systems by exploiting Jost formalism to estimate bound state energies and the scattering phase shifts. The results are in line with previous theoretical and experimental observations. The total elastic scattering cross sections are being calculated using the phase parameters.
References
J. Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic Collisions, Dover Books on Engineering (Dover Publications, 2012)
G. Pöschl and E. Teller, Bemerkungen zur Quantenmechanik des anharmonischen Oszillators, Zeitschrift für Physik 83 (1933) 143
S. Flügge, Practical quantum mechanics (Springer Science & Business Media, 2012)
S. H. Dong, Factorization Method in Quantum Mechanics, Fundamental Theories of Physics (Springer Netherlands, 2007)
D. Agboola, Solutions to the modified Pöschl-teller potential in D-dimensions, Chinese Physics Letters 27 (2010) 040301
S. Dong and S. H. Dong, An alternative approach to study the dynamical group for the modified Pöschl-Teller potential, Czechoslovak Journal of Physics 52 (2002) 753
R. Jost, Uber diefalschen Nullstellen der Elgen werteder Smatrix., Helv. Phys. Acta 20 (1947) 256
R. G. Newton, Scattering theory of waves and particles., 2nd ed. (Springer Verlag, New York, NY, 1982)
H. Van Haeringen, Charged Particle Interactions. Theory and Formulas (Coulomb Press Leyden, Leiden (Netherlands), 1985)
Y. You et al., Solutions of the Second Pöschl-Teller Potential Solved by an Improved Scheme to the Centrifugal Term, FewBody Systems 54 (2013) 2125
C. Y. Chen et al., The position-momentum uncertainty relations for a Pöschl-Teller type potential and its squeezed phenomena, Physics Letters A 377 (2013) 1070
G. F. Wei and S. H. Dong, The spin symmetry for deformed generalized Pöschl-Teller potential, Physics Letters A 373 (2009) 2428
Y. You et al., Solutions of the Second Pöschl-Teller Potential Solved by an Improved Scheme to the Centrifugal Term, FewBody Systems 54 (2013) 2125
S. H. Dong and J. Garcia Ravelo, Exact solutions of the Schrödinger equation with the second Pöschl-Teller-like potential, Modern Physics Letters B 23 (2009)
S. H. Dong, W. C. Qiang, and J. Garcia Ravelo, Analytical approximations to the Schrödinger equation for a second Pöschl-Teller-like potential with centrifugal term, International Journal of Modern Physics A 23 (2008) 1537
M. Aktas¸ and R. Sever, Exact supersymmetric solution of Schrödinger equation for central confining potentials by using the Nikiforov-Uvarov method, Journal of Molecular Structure: Theochem 710 (2004) 223
M. S¸ime¸k and Z. Yalc¸in, Generalized Pöschl-Teller potential, Journal of Mathematical Chemistry 16 (1994) 211
M. Znojil, Perturbed Pöschl-Teller oscillators, Physics Letters A 266 (2000) 254
B. Bagchi and A. Ganguly, A unified treatment of exactly solvable and quasi-exactly solvable quantum potentials, Journal of Physics A: Mathematical and General 36 (2003) L161
M. Hamzavi and A. Rajabi, Exact S-wave solution of the trigonometric Pöschl-teller potential, International Journal of Quantum Chemistry 112 (2012) 1592
S. H. Dong and A. Gonzalez Cisneros, Energy spectra of the hyperbolic and second Pöschl-Teller like potentials solved by new exact quantization rule, Annals of Physics 323 (2008) 1136
A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics (Birkhäuser Boston, 1988)
H. I. Ahmadov, S. I. Jafarzade, and M. V. Qocayeva, Analytical solutions of the Schrödinger equation for the Hulthen potential within SUSY quantum mechanics, International Journal of Modern Physics A 30 (2015) 1550193
A. I. Ahmadov et al., Bound state solution of the Klein-FockGordon equation with the Hulthen plus a ringshaped- like potential within SUSY quantum mechanics, International Journal of Modern Physics A 33 (2018) 1850203
G. F. Wei, S. H. Dong, and V. B. Bezerra, The relativistic bound and scattering states of the eckart potential with a proper new approximate scheme for the centrifugal term, International Journal of Modern Physics A 24 (2009) 161
W. C. Qiang, K. Li, and W. L. Chen, New bound and scattering state solutions of the Manning-Rosen potential with the centrifugal term, Journal of Physics A: Mathematical and Theoretical 42 (2009) 205306
P. Sahoo et al., The analytic T-matrix for the Hulthen potential in all partial waves, Reports on Mathematical Physics 88 (2021) 295
W. C. Qiang and S. H. Dong, The Manning-Rosen potential studied by a new approximate scheme to the centrifugal term, Physica Scripta 79 (2009) 045004
P. Sahoo et al., Treatment of inelastic scattering within the separable interaction model, Pramana 96 (2022)
P. Sarkar et al., Exact solution of two-potential system under same range approximation and its implication, International Journal of Modern Physics E 30 (2021)
B. Khirali, U. Laha, and P. Sahoo, Analytic transition matrix for the Manning-Rosen potential in all partial waves, Chinese Journal of Physics 77 (2022) 2355
A. D. S. Mesa, C. Quesne, and Y. F. Smirnov, Generalized Morse potential: Symmetry and satellite potentials, Journal of Physics A: Mathematical and General 31 (1998) 321
J. M. Arias, J. Gómez-Camacho, and R. Lemus, Ansu(1, 1) dynamical algebra for the Pöschl-Teller potential, Journal of Physics A: Mathematical and General 37 (2004) 877
J. I. Díaz et al., The supersymmetric modified Pöschl-Teller and delta well potentials, Journal of Physics A: Mathematical and General 32 (1999) 8447
H. Hassanabadi et al., Dirac equation for generalized Pöschl-Teller scalar and vector potentials and a Coulomb tensor interaction by Nikiforov-Uvarov method, Journal of Mathematical Physics 53 (2012)
D. Agboola, Dirac equation with spin symmetry for the modified Pöschl-Teller potential in D dimensions, Pramana 76 (2011) 875
P. Sahoo, Evaluation of n-p and n-d Analyzing Powers Through the Jost Formalism, Brazilian Journal of Physics 54 (2023)
F. Cooper, A. Khare, and U. Sukhatme, Supersymmetry and quantum mechanics, Physics Reports 251 (1995) 267
C. S. Jia, Y. Sun, and Y. Li, Complexified Pöschl-Teller II potential model, Physics Letters A 305 (2002) 231
L. Infeld and T. E. Hull, The Factorization Method, Reviews of Modern Physics 23 (1951) 21
G. H. Sun, M. A. Aoki, and S. H. Dong, Quantum information entropies of the eigenstates for the Pöschl-Teller-like potential, Chinese Physics B 22 (2013) 050302
P. Sahoo and U. Laha, Phase shift and cross section analysis of nucleon-nucleon and nucleon-nucleus scattering using second Pöschl-Teller potential, Canadian Journal of Physics 101 (2023) 441
B. J. Falaye, Corrigendum: Energy spectrum for trigonometric Pöschl-Teller potential solved by the asymptotic iteration method., Canadian Journal of Physics 91 (2013) 365
C. S. Jia, et al., Solutions of Dirac equations with the Pöschl-Teller potential, The European Physical Journal A 34 (2007) 41
S. A. Yahiaoui, S. Hattou, and M. Bentaiba, Generalized Morse and Pöschl-Teller potentials: The connection via Schrödinger equation, Annals of Physics 322 (2007) 2733
C. S. Jia, T. Chen, and L. G. Cui, Approximate analytical solutions of the Dirac equation with the generalized Pöschl-Teller potential including the pseudo-centrifugal term, Physics Letters A 373 (2009) 1621
G. A. Neece and J. C. Poirier, Quantum statistical theory of atoms in hydroquinone clathrates, The Journal of Chemical Physics 43 (1965) 4282
P. P. Corso, E. Fiordilino, and F. Persico, Ionization dynamics of a model molecular ion, Journal of Physics B: Atomic, Molecular and Optical Physics 38 (2005) 1015
M. Rey and F. Michelot, Matrix elements for powers of xdependent operators for the hyperbolic Pöschl-Teller potentials, Journal of Physics A: Mathematical and Theoretical 42 (2009) 165209
Z. Q. Ma and B.W. Xu, Quantum correction in exact quantization rules, Europhysics Letters 69 (2005) 685
S. H. Dong, A new quantization rule to the energy spectra for modified hyperbolic-type potentials, International journal of quantum chemistry 109 (2009) 701
M. C. Zhang and Z. B.Wang, Bound states of relativistic particles in the second Pöschl-Teller potentials, Acta Physica Sinica 55 (2006) 525
X. C. Zhang, et al., Bound states of the Dirac equation with vector and scalar Scarf-type potentials, Physics Letters A 340 (2005) 59
C. Quesne, An sl(4, R) Lie algebraic approach to the Bargmann functions and its application to the second Pöschl-Teller equation, Journal of Physics A: Mathematical and General 22 (1989) 3723
Y. Xu, S. He, and C.-S. Jia, Approximate analytical solutions of the Dirac equation with the Pöschl-Teller potential including the spin-orbit coupling term, Journal of Physics A: Mathematical and Theoretical 41 (2008) 255302
G. F. Wei and S. H. Dong, A novel algebraic approach to spin symmetry for Dirac equation with scalar and vector second Pöschl-Teller potentials, The European Physical Journal A 43 (2009) 185
H. Hassan, Y. B. Hoda, and L.-L. Lu, Approximate Analytical Solutions to the Generalized Pöschl-Teller Potential in D Dimensions, Chinese Physics Letters 29 (2012) 020303
L. J. Slater, Generalized hypergeometric functions (Cambridge Univ. Press, London, 1966)
A. Erdelyi, Higher Transcendental Functions (McGraw-Hill, New York, NY, 1953), p. 59
W. Magnus and F. Oberhettinger, For meln und Sätze für die speziellen Funktionen der mathematischen Physik (W. Braunbek), Zeitschrift Naturforschung Teil A 4 (1949) 319
A. W. Babister, Transcendental Functions Satisfying Nonhomogeneous Linear Differential Equations (MacMillan, New York, NY, 1967)
C. Chen et al., Low-energy nucleon-deuteron scattering, Physical Review C 39 (1989) 1261
D. Hüber et al., Phase shifts and mixing parameters for elastic neutron-deuteron scattering above breakup threshold, FewBody Systems 19 (1995) 175
M. Viviani et al., Benchmark calculation of p - H3 and n - He3 scattering, Physical Review C 95 (2017) 034003
A. Latter and R. Latter, A Phase Shift Analysis of Neutron Deuteron Scattering, Physical Review 86 (1952) 727
J. Clement et al., Hydrogen and deuterium total neutron cross sections in the MeV region, Nuclear Physics A 183 (1972) 51
P. Schwarz et al., Elastic neutron-deuteron scattering in the energy range from 2.5 MeV to 30 MeV, Nuclear Physics A 398 (1983) 1
J. McAninch et al., Analyzing power in nd elastic scattering at E Lab= 3 MeV. Measurement and calculation, Physics Letters B 307 (1993) 13
J. L. Friar et al., Benchmark solutions for n-d breakup amplitudes, Physical Review C 51 (1995) 2356
A. Kievsky, M. Viviani, and S. Rosati, Cross section, polarization observables, and phase-shift parameters in p-d and n-d elastic scattering, Physical Review C 52 (1995) R15
A. Kievsky, M. Viviani, and S. Rosati, N-d scattering above the deuteron breakup threshold, Physical Review C 56 (1997) 2987
J. Seagrave, L. Cranberg, and J. Simmons, Elastic scattering of fast neutrons by tritium and he 3, Physical Review 119 (1960) 1981
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 P. Sahoo, K. C. Pradhan, D. Rout

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.