Ab-initio calculation of optical properties of monolayer arsenene with substituted atoms

Authors

  • J. D. García-Aguilar CECyT No. 16, IPN
  • A. González-Cisneros ESCOM, IPN
  • S. Molina-Valdovinos Universidad Autónoma de Zacatecas
  • D. Valdez-Perez SEPI-ESIME, UPALM, IPN
  • A. A. Durán-Ledezma SEPI, ESIME Ticomán, IPN

DOI:

https://doi.org/10.31349/RevMexFis.71.061601

Keywords:

Arsenene; doped arsenene; optical properties; density functional theory; dielectric function; refractive index; absorbance; density of states

Abstract

Ab initio DFT calculations were used to investigate how C, Ga, Ge, O, and Se doping modify the structural, electronic, and optical properties of arsenene. Our investigation has revealed that doping leads to substantial modifications in the electronic attributes and slight distortions in the crystal lattice, affecting bond lengths and angles. These modifications have driven to have tunable band gaps, which are vital for the development of nanoelectronic and optoelectronic technologies. Furthermore, we have delved into the optical properties of doped arsenene by calculating the dielectric function within the energy window of 0 to 10 eV. Our findings demonstrate that doping results in shifts in the absorption edges and changes in the refractive index. Overall, our results provide valuable insights into the tunability of electronic and optical characteristics in doped arsenene, paving the way for its implementation in advanced technological applications.

References

J. Arun, N. Nirmala, and S. S. Dawn, Environmental Applications of Carbon-Based Materials (IGI Global, 2024)

K. M. Neilson et al., Toward Mass Production of Transition Metal Dichogenide Solar Cells: Scalable Growth of Photovoltaic-Grade Multilayer WSe2 by Tungsten Selenization, ACS Nano 18 (2024) 24819, https://doi.org/10.1021/acsnano.4c03590

D. S. Aditya and S. K. Nataraj, Structural, optical, and electronic properties of twodimensional nanomaterials, in TwoDimensional Nanomaterials-Based Polymer Nanocomposites (John Wiley and Sons, Ltd, 2024) Chap. 5, pp. 167-194

P.-C. Chen et al., High-Performance Single-Crystalline Arsenic-Doped Indium Oxide Nanowires for Transparent ThinFilm Transistors and Active Matrix Organic Light-Emitting Diode Displays, ACS Nano 3 (2009) 3383, https://doi.org/10.1021/nn900704c

S. S. Dongre et al., Review on 2D Arsenene and Antimonene: Emerging Materials for Energy, Electronic and Biological Applications, Adv. Mater. Interfaces 9 (2022) 2200442, https://doi.org/10.1002/admi.202200442

X.-J. Ye, G.-L. Zhu, J. Liu, C.-S. Liu, and X.-H. Yan, Monolayer, Bilayer, and Heterostructure Arsenene as Potential Anode Materials for Magnesium-Ion Batteries: A First-Principles Study, J. Phys. Chem. C 123 (2019) 15777, https://doi.org/10.1021/acs.jpcc.9b02399

C. Kamal and M. Ezawa, Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems, Phys. Rev. B 91 (2015) 085423, https://doi.org/10.1103/PhysRevB.91.085423

S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Atomically Thin Arsenene and Antimonene: Semimetal-Semiconductor and Indirect-Direct Band-Gap Transitions, Angew. Chem. Int. Ed. 54 (2015) 3112, https://doi.org/10.1002/anie.201411246

S. Zhang et al., Semiconducting Group 15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities, Angew. Chem. Int. Ed. 55 (2015) 1666, https://doi.org/10.1002/anie.201507568

J. Zhao, Z.-H. Qi, Y. Xu, J. Dai, X. C. Zeng, W. Guo, and J. Ma, Theoretical studies on tunable electronic structures and potential applications of two-dimensional arsenene-based materials, WIREs Comput. Mol. Sci. 9 (2018) e1387, https://doi.org/10.1002/wcms.1387

J. Shah, W. Wang, H. M. Sohail, and R. I. G. Uhrberg, Experimental evidence of monolayer arsenene: an exotic 2D semiconducting material, 2D Mater. 7 (2020) 025013, https://doi.org/10.1088/2053-1583/ab64fb

H.-S. Tsai, S.-W. Wang, C.-H. Hsiao, C.-W. Chen, H. Ouyang, Y.-L. Chueh, H.-C. Kuo, and J.-H. Liang, Direct Synthesis and Practical Bandgap Estimation of Multilayer Arsenene Nanoribbons, Chem. Mater. 28 (2016) 425, https://doi.org/10.1021/acs.chemmater.5b04949

S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Atomically Thin Arsenene and Antimonene: Semimetal-Semiconductor and Indirect-Direct Band- Gap Transitions, Angew. Chem. Int. Ed. 54 (2015) 3112, https://doi.org/10.1002/anie.201411246

M. Zeraati, S. M. Vaez Allaei, I. Abdolhosseini Sarsari, M. Pourfath, and D. Donadio, Highly anisotropic thermal conductivity of arsenene: An ab initio study, Phys. Rev. B 93 (2016) 085424, https://doi.org/10.1103/PhysRevB.93.085424

P. Rastogi, S. Kumar, S. Bhowmick, A. Agarwal, and Y. S. Chauhan, Effective Doping of Monolayer Phosphorene by Surface Adsorption of Atoms for Electronic and Spintronic Applications, IETE J. Res. 63 (2017) 205, https://doi.org/10.1080/03772063.2016.1243020

V. V. On, C. V. Ha, D. T. Anh, J. Guerrero-Sanchez, and D. M. Hoat, Designing doping strategy in arsenene monolayer for spintronic and optoelectronic applications: a case study of germanium and nitrogen as dopants, J. Phys.: Condens. Matter 34 (2022) 355301, https://doi.org/10.1088/1361-648X/ac7a81

Y. Li, C. Xia, T. Wang, X. Tan, X. Zhao, and S. Wei, Light adatoms influences on electronic structures of the twodimensional arsenene nanosheets, Solid State Commun. 230 (2016) 6, https://doi.org/10.1016/j.ssc.2016.01.005

A. A. Kistanov, S. Kh. Khadiullin, S. V. Dmitriev, and E. A. Korznikova, A First-Principles Study on the Adsorption of Small Molecules on Arsenene: Comparison of Oxidation Kinetics in Arsenene, Antimonene, Phosphorene, and InSe, Chem. Phys. Chem 20 (2018) 575, https://doi.org/10.1002/cphc.201801070

M.-Y. Liu, Y. Huang, Q.-Y. Chen, C. Cao, and Y. He, Unexpected electronic structure of the alloyed and doped arsenene sheets: First-Principles calculations, Sci. Rep. 6 (2016) 29114, https://doi.org/10.1038/srep29114

X. Liu, L. Liu, L. Yang, X. Wu, and P. K. Chu, Optical Identification of Topological Defect Types in Monolayer Arsenene by First-Principles Calculation, J. Phys. Chem. C 120 (2016) 24917, https://doi.org/10.1021/acs.jpcc.6b10303

X. Kong, M. Gao, X.-W. Yan, Z.-Y. Lu, and T. Xiang, Superconductivity in electron-doped arsenene, Chin. Phys. B 27 (2018) 046301, https://doi.org/10.1088/1674-1056/27/4/046301

J. Zhao, Y. Li, and J. Ma, Quantum spin Hall insulators in functionalized arsenene (AsX, X = F, OH and CH3) monolayers with pronounced light absorption, Nanoscale 8 (2016) 9657, https://doi.org/10.1039/C6NR01683A

M. Qi, S. Dai, and P. Wu, Tuning electronic structure and magnetic properties of Mn- and Fe-doped arsenene with biaxial strain, J. Phys.: Condens. Matter 32 (2019) 085802, https://doi.org/10.1088/1361-648X/ab537a.19

D.M. Hoat et al., Developing feature-rich electronic and magnetic properties in the ß-As monolayer for spintronic and optoelectronic applications by C and Si doping: A first-principles study, Surf. Interfaces 27 (2021) 101534, https://doi.org/10.1016/j.surfin.2021.101534

J. Du, C. Xia, T.Wang, X. Zhao, X. Tan, and S.Wei, Firstprinciples studies on substitutional doping by group IV and VI atoms in the two-dimensional arsenene, Appl. Surf. Sci . 378 (2016) 350, https://doi.org/10.1016/j.apsusc.2016.03.055

J. He, G. Liu, X. Li, H. Wang, and G. Zhang, Firstprinciples study of strain on BN-doped arsenene, J. Mol. Modeling 28 (2022) 190, https://doi.org/10.1007/s00894-022-05186-9

M. Bai, W.X. Zhang, and C. He, Mechanical, Electronic and magnetic properties of Ga, Ge, P and Sb doped monolayer arsenene, J. Solid State Chem. 251 (2017) 1, https://doi.org/10.1016/j.jssc.2017.04.004

Z. Liu et al., First-principles study of structural and electronic properties of substitutionally doped arsenene, Physica E 119 (2020) 114018, https://doi.org/10.1016/j.physe.2020.114018

D. Kecik, E. Durgun, and S. Ciraci, Stability of single-layer and multilayer arsenene and their mechanical and electronic properties, Phys. Rev. B 94 (2016) 205409, https://doi.org/10.1103/PhysRevB.94.205409

J. M. Galicia Hernandez, H. N. Fernandez-Escamilla, J. Guerrero Sanchez, and N. Takeuchi, Electronic and optical properties of the buckled and puckered phases of phosphorene and arsenene, Sci. Rep. 12 (2022) 20979, https://doi.org/10.1038/s41598-022-24425-w

Y.-L. Song, D.-B. Lu, and X.-Y. Huang, Optical properties of arsenene nanoribbons: A first principle study, Mater. Sci. Semicond. Process. 136 (2021) 106139, https://doi.org/10.1016/j.mssp.2021.106139

D. Kecik, E. Durgun, and S. Ciraci, Optical properties of singlelayer and bilayer arsenene phases, Phys. Rev. B 94 (2016) 205410, https://doi.org/10.1103/PhysRevB.94.205410

J. M. Galicia Hernandez, J. Guerrero-Sanchez, J. A. Rodriguez-Martinez, and N. Takeuchi, First-Principles Studies of the Electronic and Optical Properties of TwoDimensional Arsenic-Phosphorus (2D As-P) Compounds, ACS Omega 9 (2024) 35718, https://doi.org/10.1021/acsomega.4c04108

H. Shu, Y. Li, X. Niu, and J. Guo, Electronic structures and optical properties of arsenene and antimonene under strain and an electric field, J. Mater. Chem. C 6 (2018) 83, https://doi.org/10.1039/C7TC04072E

D. Singh, S. K. Gupta, Y. Sonvane, and S. Sahoo, Modulating the electronic and optical properties of monolayer arsenene phases by organic molecular doping, Nanotechnology 28 (2017) 495202, https://doi.org/10.1088/1361-6528/aa9430

M. Sun, J.-P. Chou, J. Gao, Y. Cheng, A. Hu, W. Tang, and G. Zhang, Exceptional Optical Absorption of Buckled Arsenene Covering a Broad Spectral Range by Molecular Doping, ACS Omega 3 (2018) 8514, https://doi.org/10.1021/acsomega.8b01192

J. X. Wang, G. L. Liu, L. Wei, and G. Y. Zhang, Firstprinciples calculations to investigate the effect of X (X=B, Al, Ga) atomic substitution concentration on the electronic structure and optical properties of arsenene, Mod. Phys. Lett. B 38 (2024) 2450095, https://doi.org/10.1142/S0217984924500957

P. Giannozzi et al., Advanced capabilities for materials modelling with Quantum ESPRESSO, J. Phys.: Condens. Matter 29 (2017) 465901, https://doi.org/10.1088/1361-648X/aa8f79

P. Giannozzi et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Mat- ter 21 (2009) 395502, https://doi.org/10.1088/0953-8984/21/39/395502

P. Giannozzi et al., Quantum ESPRESSO toward the exascale, The Journal of Chemical Physics 152 (2020) 154105, https://doi.org/10.1063/5.0005082

N. T. Hung, A. R. T. Nugraha, and R. Saito, Quantum ESPRESSO Course for Solid-State Physics (Jenny Stanford Publishing Pte. Ltd., Singapore, 2023), https://doi.org/10.1201/9781003290964

J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118 (2003) 8207, https://doi.org/10.1063/1.1564060

A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J. Chem. Phys. 125 (2006) 224106, https://doi.org/10.1063/1.2404663

J. Piprek, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation (Academic Press, 2003). 45. C. Ambrosch-Draxl and J. O. Sofo, Linear optical properties of solids within the full-potential linearized augmented planewave method, Comput. Phys. Commun. 175 (2006) 1, https://doi.org/10.1016/j.cpc.2006.03.005

S. Saha, T. P. Sinha, and A. Mookerjee, Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3, Phys. Rev. B 62 (2000) 8828, https://doi.org/10.1103/PhysRevB.62.8828

H. M. Gomaa, I.S. Yahia, and H.Y. Zahran, Correlation between the static refractive index and the optical bandgap: Review and new empirical approach, Physica B 620 (2021) 413246, https://doi.org/10.1016/j.physb.2021.413246

H. T. Nguyen-Truong, T.-T. Pham, N. H. Vu, D. H. Ngo, and H. M. Le, Energy-loss function for lead, Commun. Phys. 27 (2017) 65, http://doi.org/10.15625/0868-3166/27/1/9201

M. Dresselhaus, G. Dresselhaus, S. B. Cronin, and A. G. S. Filho, Solid State Properties: From Bulk to Nano (SpringerVerlag, Germany, 2018)

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, Berlin, 2010)

Downloads

Published

2025-11-01

How to Cite

[1]
J. D. García-Aguilar, A. . . Gonz´alez-Cisneros, S. Molina-Valdovinos, D. . . Valdez-Perez, and A. A. Durán-Ledezma, “Ab-initio calculation of optical properties of monolayer arsenene with substituted atoms”, Rev. Mex. Fís., vol. 71, no. 6 Nov-Dec, pp. 061601 1–, Nov. 2025.