Enhancing the electronic properties of graphimine through transition metal substitution: A DFT Study
DOI:
https://doi.org/10.31349/RevMexFis.71.051601Keywords:
Graphimine; energy gap; DFT; transition metal; charge distribution.Abstract
This research aims to study the novel graphimine material by highlighting its physical and chemical properties. To enhance these properties, some atoms in the compound were replaced by transition metals. This replacement leads to new interactions between the bonds of the added metal atoms and the atoms of the original compound, which contributes to significantly improving the electronic properties of the compound due to the changed distribution of charges within the structure. Modeling of the graphimine structure as well as the resulting compounds after adding atoms of transition metals such as Sc, Ti, Fe, Ni, Cu, and Nb were performed. The best optimization of the compounds was achieved using density functional theory (DFT) and based on the B3LYP and 6-31G basis set. After that, the various properties of the compounds, such as charge distribution contours, energy gap, hardness, softness, and infrared spectrum, were calculated. The results indicate that the energy gap has been reduced in all compounds compared to the energy gap of the original compound, reflecting the effect of the modifications introduced on the electronic properties of the compound. Therefore, the energy gap values fall within the range of semiconductors, which gives great importance to these compounds, especially in electronic applications such as catalysts and solar cells.
References
D.C. McLeod, K.K. Lachmayr, R.H. Lambeth, A. Switek, A. Murphy, R.A. Pesce-Rodriguez, S.R. Lustig, Synthesis of a Novel Hexa-functional Monomer for 2D Polymers: 2, 4, 6-Tris ((diphenylmethylene) amino) benzene-1, 3, 5-tricarbaldehyde, DEVCOM Army Res. Lab. (2023). https://doi.org/10.21236/AD1195734
A.D. McNaught, A. Wilkinson, Compendium of chemical terminology, Blackwell Science Oxford, 1997. [ISBN 0865426848]
A. Wolfel, C.I.A. Igarzabal, M.R. Romero, Imine bonding self-repair hydrogels after periodate-triggered breakage of their cross-links, Eur. Polym. J. 140 (2020) 110038. https://doi.org/10.1016/j.eurpolymj.2020.110038
E. Napiórkowska, K. Milcarz, Szeleszczuk, Review of applications of density functional theory (DFT) quantum mechanical calculations to study the high-pressure polymorphs of organic crystalline materials, Int. J. Mol. Sci. 24 (2023) 14155. https://doi.org/10.3390/ijms241814155
D.C. McLeod, K.K. Lachmayr, J. Biswakarma, A. Switek, R.H. Lambeth, S.R. Lustig, An Efficient, One-Step Synthesis of 2, 4, 6-Triaminobenzene-1, 3, 5-tricarboxylaldehyde, (2023). https://doi.org/10.21236/AD1193085
E. Sandoz-Rosado, T.D. Beaudet, J.W. Andzelm, E.D. Wetzel, High strength films from oriented, hydrogenbonded graphamid 2D polymer molecular ensembles, Sci. Rep. 8 (2018) 3708. https://doi.org/10.1038/s41598-018-22011-7
R.G. Parr, L. V. Szentpály, S. Liu, Electrophilicity index, J. Am. Chem. Soc. 121 (1999) 1922-1924. https://doi.org/10.1021/ja983494x
M.L. Jabbar, Computational studies on electronic and optical properties of dopamine derivatives structure: A DFT study, J. Mech. Behav. Mater. 30 (2021) 279-284. https://doi.org/10.1515/jmbm-2021-0030
L.H. Choudhury, T. Parvin, Recent advances in the chemistry of imine-based multicomponent reactions (MCRs), Tetrahedron. 67 (2011) 8213-8228. https://doi.org/10.1016/j.tet.2011.07.020
Sdr, sa, Yadigar GA˜ 1 4 lseven Sdr, Mustafa Kumalar, and Erol Taal. Ab initio Hartree-Fock and density functional theory investigations on the conformational stability, molecular structure and vibrational spectra of 7-acetoxy-6-(2, 3-dibromopropyl)- 4, 8-dimethylcoumarin molecule. Journal of Molecular Structure 964, no. 1-3 (2010): 134-151. https://doi.org/10.1016/j.molstruc.2009.11.023
N.H. Al-Saadawy, Synthesis, Characterization, and Theoretical Study of Some New Organotellurium Compounds Derived from Camphor, Indones. J. Chem., 2022, 22(2),437-445. https://doi.org/10.22146/ijc.69805
M. H Muzel, A.S. Alwan, M.L. Jabbar, Electronical Properties for (CxHyZ2-NO) Nanoclusters, Curr. Nanomater. 2 (2017) 33- 38. DOI:10.2174/2405461502666170227121949
K.K. Lachmayr, D.C. McLeod, E.D. Wetzel, S. Lustig, Chemical Synthesis and Physical Properties of Graphimine-a New 2D High-Performance Polymer, in: 2023 AIChE Annu. Meet., AIChE, 2023. ISBN 978-0-8169-1120-2
A.S. Alwan, Density functional theory investigation of (C4H2N2) 3 nanocluster and (C4H2N2) 3–P, Al, As, B, C and in nanoclusters, in: AIP Conf. Proc., AIP Publishing LLC, (2020) 30013. DOI: https://doi.org/10.32792/utq/utjsci/v10i2.1123
M.L. Jabbar, K.J. Kadhim, Electronic Properties of Doped Graphene Nanoribbon and the Electron Distribution Contours: A DFT Study, Russ. J. Phys. Chem. B. 15 (2021) 46-52. DOI:10.1134/S1990793121010188
R. H. Aguilera-del-Toro, F. Aguilera-Granja, E. E. Vogel. Structural and electronic properties of (TiO2)10 clusters with impurities: A density functional theory investigation. J Physics and Chemistry of Solids 135 (2019) 109107. https://doi.org/10.1016/j.jpcs.2019.109107
T. Alonso-Lanza, A. Ayuela, F. Aguilera-Granja. Substitutional 4d and 5d impurities in graphene. Phys. Chem. Chem. Physics 18(31) (2016) 21913-21920. https://doi.org/10.1039/C6CP04677K
W. Kohn, Nobel Lecture: Electronic structure of matterwave functions and density functionals, Rev. Mod. Phys. 71 (1999) 1253. DOI: https://doi.org/10.1103/RevModPhys.71.1253
M.L. Jabbar, Some electronical properties for Coronene-Y interactions by using density functional theory (DFT), J. Basrah Res. 44 (2018) 11-19. ISSN: 2096-3246
M.E. Ayalew, DFT studies on molecular structure, thermodynamics parameters, HOMO-LUMO and spectral analysis of pharmaceuticals compound quinoline (Benzo [b] Pyridine), J. Biophys. Chem. 13 (2022) 29-42. DOI: 10.4236/jbpc.2022.133003
J.A. Zeitler, P.F. Taday, D.A. Newnham, M. Pepper, K.C. Gordon, T. Rades, Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting-a review, J. Pharm. Pharmacol. 59 (2007) 209-223. https://doi.org/10.1211/jpp.59.2.0008
M.L. Jabbar, K.J. AL-Shejairy, UMA NOVA GEOMETRIA FRACTAL DOPING PARA NANOFIBRAS DE GRAFENO E A OTIMIZAO DE CRISTAL: UM ESTUDO DA TEORIA DA DENSIDADE FUNCIONAL (DFT)., Periodico Tch Qumica. 17 (2020). ISSN 2179-0302
A.S. Alwan, S.K. Ajeel, M.L. Jabbar, Theoretical study for Coronene and Coronene-Al, B, C, Ga, In and Coronene-O interactions by using Density Functional theory, Univesity Thi-Qar J. 14 (2019). https://doi.org/10.32792/utq/utj/vol14/4/6
G. Herrera-Perez, J. Plaisier, A. Reyes-Rojas, L. FuentesCobas, Electron density contour maps via Rietveld-MEM analysis using HR-XRD for the polycrystalline ferroelectric BCZT, Supl. La Rev. Mex. Física. 3 (2022) 10601. DOI:10.31349/SuplRevMexFis.3.010601
F.N. Ajeel, M.H. Mohammed, A.M. Khudhair, Energy bandgap engineering of graphene nanoribbon by doping phosphorous impurities to create nano-heterostructures: A DFT study, Phys. E Low-Dimensional Syst. Nanostructures. 105 (2019) 105-115. https://doi.org/10.1016/j.physe.2018.09.006
M.D. Hanson, Visualizing the Hydrogen Atomic Orbitals: A Tool for Undergraduate Physical Chemistry, (2024). https://doi.org/10.1021/acs.jchemed.4c00547
N.Q. Su, X. Xu, Insights into direct methods for predictions of ionization potential and electron affinity in density functional theory, J. Phys. Chem. Lett. 10 (2019) 2692-2699. https://doi.org/10.1021/acs.jpclett.9b01052
P.F. Lang, B.C. Smith, Ionization energies of atoms and atomic ions, J. Chem. Educ. 80 (2003) 938. DOI:10.1021/ed080p938
C.-G. Zhan, J.A. Nichols, D.A. Dixon, Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies, J. Phys. Chem. A. 107 (2003) 4184- 4195. https://doi.org/10.1021/jp0225774
A.T. Atwan, M.L. Jabbar, Theoretical Study of Optoelectronic Properties ofPorphyrin and Porphyrin DerivativesVia TD-DFT, NeuroQuantology. 20 (2022) 1596. DOI: 10.14704/nq.2022.20.10.NQ55143
R. Vivas-Reyes, A. Aria, Evaluation of group electronegativities and hardness (softness) of group 14 elements and containing functional groups through density functional theory and correlation with NMR spectra data, Eclética Química. 33 (2008) 69–76. https://doi.org/10.26850/1678-4618eqj.v33.3.2008.p69-76
S. Kaya, C. Kaya, A new method for calculation of molecular hardness: a theoretical study, Comput. Theor. Chem. 1060 (2015) 66-70. https://doi.org/10.1016/j.comptc.2015.03.004
A.S. Rad, Al-doped graphene as a new nanostructure adsorbent for some halomethane compounds: DFT calculations, Surf. Sci. 645 (2016) 6-12. https://doi.org/10.1016/j.susc.2015.10.036
M.L. Jabbar, K.J. Kadhim, Linear & nonlinear optical properties of undoped & doped graphene nanoribbon via TD-DFT study, in: AIP Conf. Proc., AIP Publishing LLC, (2020) 30011. DOI:10.1063/5.0030597
A. T. Khudhair and F. H. Hanoo. A DFT Study of The Sensing and Adsorption of Graphene Nanoribbons for DNA Sequencing. University of Thi-Qar Journal of Science,8 (2021) 141- 147. UTJsci has P-ISSN: 1991-8690 and E-ISSN: 2709-0256
F. Aguilera-Granja, R. C. Longo, L. J. Gallego, and A. Vega. Structural and magnetic properties of x12y (x, y= Fe, Co, Ni, Ru, Rh, Pd, and Pt) nanoalloys. Journal of Chemical Physics 132 (2010) 184507. DOI:10.1063/1.3427292
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 S. Farqad Enais, M. L. Jabbar

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.