Properties and baroclinic instability of stratified thermal upper-ocean flow

Authors

DOI:

https://doi.org/10.31349/RevMexFis.71.050601

Keywords:

Ocean mixed layer, submesoscales, thermal shallow water/Ripa’s model, stratification, noncanonical Hamiltonian structure, Arnold’s method, Sheperd’s method

Abstract

We study the properties of, and investigate the stability of a baroclinic zonal current in, a thermal rotating shallow-water model, sometimes called Ripa's model, featuring stratification for quasigeostrophic upper-ocean dynamics. The model has Lie--Poisson Hamiltonian structure. In addition to Casimirs, the model supports weak Casimirs forming the kernel of the Lie–Poisson bracket for the potential vorticity evolution independent of the details of the buoyancy as this is advected under the flow. The model sustains Rossby waves and a neutral model, whose spurious growth is prevented by a positive-definite integral, quadratic on the deviation from the motionless state. A baroclinic zonal jet with vertical curvature is found to be spectrally stable for specific configurations of the gradients of layer thickness, vertically averaged buoyancy, and buoyancy frequency. Only a subset of such states was found Lyapunov stable using the available integrals, except the weak Casimirs, whose role in constraining stratified thermal flow remains to be understood. The existence of Lyapunov-stable states enabled us to a priori bound the nonlinear growth of perturbations to spectrally unstable states. Our results do not support the generality of earlier numerical evidence on the suppression of submesoscale wave activity as a result of the inclusion of stratification in thermal shallow-water theory, which we supported with direct numerical simulations.

References

Fernando Andrade-Canto, Francisco J. Beron-Vera, Gustavo J. Goni, Daniel Karrasch, Maria J. Olascoaga, and Joquin Trinanes. Carriers of Sargassum and mechanism for coastal inundation in the Caribbean Sea. Phys. Fluids, 34 (2022) 016602

Vladimir I. Arnold. Vladimir I. Arnold - Collected Works: Hydrodynamics, Bifurcation Theory, and Algebraic Geometry 1965-1972. Springer Berlin Heidelberg, (2014)

E. Beier. A numerical investigation of the annual variability in the Gulf of California. J. Phys. Oceanogr., 27 (1997) 615

T.B. Benjamin. Impulse, flow force and variational principles. IMA J. Appl. Math., 32 (1984) 3

G. Boccaletti, R. Ferrari, and B. Fox-Kemper. Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37 (2007) 2228

F. J. Beron-Vera. Extended shallow-water theories with thermodynamics and geometry. Phys. Fluids, 33 (2021) 106605

F. J. Beron-Vera. Multilayer shallow-water model with stratification and shear. Rev. Mex. Fis., 67 (2021) 351

F. J. Beron-Vera. Nonlinear saturation of thermal instabilities. Phys. Fluids, 33 (2021) 036608

F. J. Beron-Vera and Erwin Luesink. Dual Euler–Poincaré/Lie-Poisson formulation of subinertial stratified thermal ocean flow with identification of Casimirs as Noether quantities (2025). https://doi.org/10.48550/arXiv.2412.05441

D. Crisan, D. D. Holm, E. Luesink, P. R. Mensah, and W. Pan. Theoretical and computational analysis of the thermal quasigeostrophic model. Journal of Nonlinear Science, 33 (2023) 96

Yangyang Cao, Alexander Kurganov, Yongle Liu, and Vladimir Zeitlin. Flux globalization based well-balanced pathconservative central-upwind scheme for two-layer thermal rotating shallow water equations. Journal of Computational Physics, 474 (2023) 111790

Paolo Cifani, Milo Viviani, Erwin Luesink, Klas Modin, and Bernard J. Geurts. Casimir preserving spectrum of twodimensional turbulence. Phys. Rev. Fluids, 7 (2022) L082601

P. J. Dellar. Common Hamiltonian structure of the shallow water equations with horizontal temperature gradients and magnetic fields. Phys. Fluids, 15 (2003) 292

Christopher Eldred, Thomas Dubos, and Evaggelos Kritsikis. A quasi-Hamiltonian discretization of the thermal shallow water equations. Journal of Computational Physics, 379 (2019) 1

R. Fjørtoft. Application of integral theorems in deriving criteria of stability for laminar flows and for the baroclinic circular vortex. Geofys. Publ., 17 (1950) 1

Y. Fukamachi, J. P. McCreary, and J. A. Proehl. Instability of density fronts in layer and continuously stratified models. J. Geophys. Res., 100 (1995) 2559

E. Gouzien, N. Lahaye, V. Zeitlin, and T. Dubos. Thermal instability in rotating shallow water with horizontal temperature/density gradients. Physics of Fluids, 29 (2017) 101702

Darryl D. Holm, Ruiao Hu, and Oliver D. Street. Coupling of Waves to Sea Surface Currents Via Horizontal Density Gradients, page 109-133. (Springer International Publishing, 2022)

D. D. Holm and E. Luesink. Stochastic wave–current interaction in thermal shallow water dynamics. J. Nonlinear Sci., 31 (2021) 29

Darryl D. Holm, Erwin Luesink, and Wei Pan. Stochastic mesoscale circulation dynamics in the thermal ocean. Phys. Fluids, 33 (2021) 046603

D. D. Holm, J. E. Marsden, and T. S. Ratiu. The Euler-Poincaré equations in geophysical fluid dynamics. In J. Norbury and I. Roulstone, editors, Large-Scale Atmosphere-Ocean Dynamics II: Geometric Methods and Models, pages 251-299. (Cambridge University, 2002)

D. D. Holm, J. E. Marsden, T. Ratiu, and A. Weinstein. Nonlinear stability of fluid and plasma equilibria. Phys. Rep., 123 (1985) 1

Darryl D. Holm. Ideal shallow water dynamics in a rotating frame. MPE CDT PDE Lecture Notes, (2015)

Alexander Kurganov, Yongle Liu, and Vladimir Zeitlin. Moistconvective thermal rotating shallow water model. Physics of Fluids, 32 (2020) 066601

M. D. Kruskal and C. Oberman. Stability of plasma in static equilibrium. Phys. Fluids, 1 (1958) 275

Noé Lahaye, Olivier Larroque, and Vladimir Zeitlin. Equatorial modons in thermal rotating shallow water model. Journal of Fluid Mechanics, 984 (2024)

D. Lewis, J. Marsden, and R. Montgomery. The Hamiltonian structure for dynamic free boundary problem. Physica D, 18 (1986) 391

Noe Lahaye, Vladimir Zeitlin, and Thomas Dubos. Coherent dipoles in a mixed layer with variable buoyancy: Theory compared to observations. Ocean Modelling, 153 (2020) 101673

A. Mahadevan. The impact of submesoscale physics on primary productivity of plankton. Annu. Rev. Mar. Sci., 8 (2016) 161

Dennis J. McGillicuddy. Mechanisms of physical-biologicalbiogeochemical interaction at the oceanic mesoscale. Annual Review of Marine Science, 8 (2016) 125

J. C. McWilliams. Submesoscale currents in the ocean. Proc R Soc A, 472 (2016) 20160117

P. J. Morrison and S. Eliezer. Spontaneous symmetry breaking and neutral stability in the noncanonical hamiltonian formalism. Physical Review A, 33 (1986) 4205

P. J. Morrison and J. M. Greene. Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics. Phys. Rev. Lett., 45 (1980) 790

P. J. Morrison and R. D. Hazeltine. Hamiltonian formulation of reduced magnetohydrodynamics. Phys. Fluids, 27 (1984) 886

J. P. McCreary and P.K. Kundu. A numerical investigation of the Somali current during the southwest monsoon. J. Mar. Res., 46 (1988) 25

P. J. Morrison. Hamiltonian description of the ideal fluid. Rev. Mod. Phys., 70 (1998) 467

Klas Modin and Milo Viviani. A Casimir preserving scheme for long-time simulation of spherical ideal hydrodynamics. Journal of Fluid Mechanics, 884 (2019) A22

J. J. O’Brien and R. O. Reid. The non-linear response of a twolayer, baroclinic ocean to a stationary, axially-symmetric hurricane: Part I: Upwelling induced by momentum transfer. J. Atmos. Sci., 24 (1967) 197

J. L. Ochoa, J. Sheinbaum, and E. G. Pavía. Inhomogeneous rodons. J. Geophys. Res., 103 (1998) 24869

J. Pedlosky. Finite-amplitude baroclinic waves at minimum critical shear. J. Atmos. Sci., 39 (1982) 555

J. Pedlosky. Geophysical Fluid Dynamics. (Springer, 2nd edition, 1987)

R. Pinet and E. Pavía. Stability of elliptical horizontally inhomogeneous rodons. J. Fluid Mech., 416 (2000) 29

P. Ripa. General stability conditions for zonal flows in a onelayer model on the beta-plane or the sphere. J. Fluid Mech., 126 (1983) 463

P. Ripa. Sistemas Hamiltonianos singulares. I: Planteamiento del caso discreto, Teorema de Noether. Rev. Mex. Fıs., 38 (1992) 984

P. Ripa. Arnol’d’s second stability theorem for the equivalent barotropic model. J. Fluid Mech., 257 (1993) 597

P. Ripa. Conservation laws for primitive equations models with inhomogeneous layers. Geophys. Astrophys. Fluid Dyn., 70 (1993) 85

P. Ripa. On improving a one-layer ocean model with thermodynamics. J. Fluid Mech., 303 (1995) 169

P. Ripa. Linear waves in a one-layer ocean model with thermodynamics. J. Geophys. Res. C, 101 (1996) 1233

P. Ripa. Low frequency approximation of a vertically integrated ocean model with thermodynamics. Rev. Mex. Fis., 42 (1996) 117

P. Ripa. On the validity of layered models of ocean dynamics and thermodynamics with reduced vertical resolution. Dyn. Atmos. Oceans, 29 (1999) 1

P. Ripa. Estabilidad e inestabilidad. Parte i: Uso de integrales de movimiento en el problema de estabilidad. Rev. Mex. Fıs., 42 (2000) 413

P.S. Schopf and M.A. Cane. On equatorial dynamics, mixed layer physics and sea surface temperature. J. Phys. Oceanogr., 13 (1983) 917

T.G. Shepherd. Rigorous bounds on the nonlinear saturation of instabilities to parallel shear flows. J. Fluid Mech., 196 (1988) 291

T. G. Shepherd. Symmetries, conservation laws and Hamiltonian structure in geophysical fluid dynamics. Adv. Geophys., 32 (1990) 287

E. S. Warneford and P. J. Dellar. The quasi-geostrophic theory of the thermal shallow water equations. J. Fluid Mech., 723 (2013) 374

Emma S. Warneford and Paul J. Dellar. Thermal shallow water models of geostrophic turbulence in Jovian atmospheres. Physics of Fluids, 26 (2014) 016603

Downloads

Published

2025-09-01

How to Cite

[1]
F. J. BERON-VERA and M. Olascoaga, “Properties and baroclinic instability of stratified thermal upper-ocean flow”, Rev. Mex. Fís., vol. 71, no. 5 Sep-Oct, pp. 050601 1–, Sep. 2025.