Synthesis and characterization of Cu2O thin films obtained from a CO2-N2 plasma mixture
DOI:
https://doi.org/10.31349/RevMexFis.71.061001Keywords:
Plasma, Thinfilms, Cu2O, Raman, SEM, AFM, EDS, OES, XRDAbstract
In this study, a CO2-N2 plasma mixture was used to synthesize Cu2O thin-films oxides metallics in a pulsed sputtering system. The plasma was generated using a percentage of 80% CO2-20% N2 between two copper (Cu) electrodes. The Cu2O obtained were characterized by Raman spectroscopy, with the intention of detecting the bonding structure of the deposited thin films, while scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to study the surface morphology of the thin film. Dispersion Analysis (EDS) was conducted to determine the stoichiometric equilibrium present in the sample. The plasma characterization was performed during the deposition process using optical emission spectroscopy (OES), and the influence of the deposition process parameters on the chemical fragmentation of species present in the plasma was determined. The Raman results confirm the presence of Cu2O films, and SEM analysis showed an irregular surface on the Cu substrate, forming a non-homogeneous surface. The morphology observed through AFM indicated that the thin films grew as islands, corroborating the generation of amorphous structures grown on the Cu surface. EDS analysis confirmed the presence of only copper and oxygen in the sample, whereas OES spectra confirmed the dissociation of CO2 within the plasma, allowing for the presence of oxides within it.
References
Y. Zhang, F. Zhai and L. Yi,, Study of spin-polarized plasma driven by spin force in a two-dimensional quantum electron gas, Physics Letters A 46 (2016) 3908, https://doi.org/10.1016/j.physleta.2016.09.050
X. Hou, H. Sun, L. Liu, X. Jia and H. Liu, Unexpected large room-temperature ferromagnetism in porous Cu2O thin films, Journal of Magnetism and Magnetic Materials 382 (2015) 20, https://doi.org/10.1016/j.jmmm.2015.01.041
S. E. Bogenrieder, J. Berner, A. K. Engstfeld, T. Jacob, First Principles Study on the Structural and Magnetic Properties of Low-Index Cu2O and CuO Surfaces, Chem.Rxiv 1 (2024) https://doi.org/10.26434/chemrxiv-2024-29pkw
B. Rajesh Kumar, B. Hymavathi & T. Subba Rao, Structural and Optical Properties of Nanostructured Cu2O Thin Films for Optoelectronic Devices, Materials Today: Proceedings 4 (2017) 3903, https://doi.org/10.1016/j.matpr.2017.02.289
S. Sharma, and J. Sharma, DFT study of electronic and optical properties of Cu2O nanostructures, AIP Conf. Proc. 2093 (2019) 020032, https://doi.org/10.1063/1.5097101
T. S. Omelchenko, Y. Tolstova, Ha. A. Atwater, and N. S. Lewis, Excitonic Effects in Emerging Photovoltaic Materials: A Case Study in Cu2O, ACS Energy Letters 2 (2017) 431, https://doi.org/10.1021/acsenergylett.6b00704
Y.A. Wu et al. Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol, Nat Energy 4 (2019), 957, https://doi.org/10.1038/s41560-019-0490-3
Q. Su, C. Zuo, M. Liu, X. Tai, A Review on Cu2O-Based Composites in Photocatalysis: Synthesis, Modification, and Applications. Molecules 28 (2023) 5576, https://doi.org/10.3390/molecules28145576
R.P. Wijesundera, L.K.A.D.D.S. Gunawardhana, and W. Siripala, Electrodeposited Cu2O homojunction solar cells: Fabrication of a cell of high short circuit photocurrent, Solar Energy Materials and Solar Cells 157 (2016) 881, https://doi.org/10.1016/j.solmat.2016.07.005
L. Chau-Kuang Liau, Y.-C. Lin, and Yong-Jie Peng, Fabrication Pathways of p-n Cu2O Homojunction Films by Electrochemical Deposition Processing, J. Phys. Chem. C. 117 (2013) 26426, https://doi.org/10.1021/jp405715c
B. Balamurunga, B. R. Mehta, Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation, Thin Solid Films 396 (2001) https://doi.org/10.1016/S0040-6090(01)01216-0
M. Izaki et al., Electrochemically constructed p-Cu2O/nZnO heterojunction diode for photovoltaic device, J Phys. D. 40 (2007) 3326, https://doi.org/10.1088/0022-3727/40/11/010
Sumita Choudhary, J. V. N. Sarma, and Subhashis Gangopadhyay, Growth and characterization of single phase Cu2O by thermal oxidation of thin copper films, AIP Conference Proceedings 1724 (2016) 020116, https://doi.org/10. 1063/1.4945236
W. Wang W, Z. Liu, Y. Liu, C. Xu, C. Zheng and G. Wang, A simple wet-chemical synthesis and characterization of CuO nanorods, Appl. Phys. A 76 (2003) 417, https://doi.org/10.1007/s00339-002-1514-5
K. Amikura, T. Kimura, M. Hamada, N. Yokoyama, J. Miyazaki, and Y. Yamada, Copper oxide particles produced by laser ablation in water, Appl. Surf. Sci 254 (2008) 6976, https://doi.org/10.1016/j.apsusc.2008.05.091
Z. Weifeng, C. Yue, P. Xihong, Z. Kehua, L. Yingbin, and H. Zhigao, The Phase Evolution and Physical Properties of Binary Copper Oxide Thin Films Prepared by Reactive Magnetron Sputtering, Materials 11 (2018) 1253, https://doi.org/10.3390/ma11071253
S. Hernando, Salapare III, A. Juvy, L. Balbarona, C. Pierre, and B. Arnaud, Cupric Oxide Nanostructures from Plasma Surface Modification of Copper, Biomimetics 4 (2019), 42, https://doi.org/10.3390/biomimetics4020042
M. C. González et al., Synthesis and Characterization of CN Thin Films Produced by DC-Pulsed Sputtering in an CH3CH2OH-N2 Atmosphere, Advances in Science, Technology and Engineering Systems Journal 7 (2022) 53, https://doi.org/10.25046/aj070106
T. Silva, N. Britum, T. Godfroid and R. Snyder, Optical characterization of a microwave pulsed discharge used for dissociation of CO2, Plasma Sources Sci. Technol. 23 (2014) 025009, https://doi.org/10.1088/0963-0252/23/2/025009
L. Debbichi, M. C. Marco de Lucas, J. F. Pierson and P. Kruger, Vibrational Properties of CuO and Cu4O3 from FirstPrinciples Calculations, and Raman and Infrared Spectroscopy, J. Phys. Chem. C 116 (2012) 10232, https://doi.org/10.1021/jp303096m
Z. Weifeng, C. Yue, P. Xihong, Z. Kehua, L. Yingbin, H. Zhigao, The Phase Evolution and Physical Properties of Binary Copper Oxide Thin Films Prepared by Reactive Magnetron Sputtering, Materials 11 (2018) 1253, https://doi.org/10.3390/ma11071253
S. Wang et al., Nanoscale-Precision Removal of Copper in Integrated Circuits Based on a Hybrid Process of Plasma Oxidation and Femtosecond Laser Ablation, Micromachines 12 (2021) 1188, https://doi.org/10.3390/mi12101188
M. Ohring, The Materials Science of Thin Films. Academic.Press.Inc (1992) p. 53
C. Carabatos, Lattice Vibrations of Cu2O at the Long Wave Limit. Phys. Status Solidi b (1970) https://doi.org/10.1002/pssb.19700370228
F. I. Kreingold, V.L. Makarov, Resonance Interaction between Ortho- and Para-Exciton Levels Due to Phonons in a Cuprous Oxide Crystal, Luminescence of Crystals, Molecules, and Solutions. Springer, Boston, MA., (1973), https://doi.org/10.1007/978-1-4684-2043-2 63
P. F. Williams, S. P. S. Porto, Symmetry-Forbidden Resonant Raman Scattering in Cu2O, Physical Review B. 8 (1973) 1782, https://doi.org/10.1103/PhysRevB.8.1782
A. Compaan, H. Z. Cummins, Raman Scattering, Luminescence, and Exciton-Phonon Coupling in Cu2O, Physical Review B. 12 (1972) 4753, https://doi.org/10.1103/PhysRevB.6.4753
S. Perusquía, P. G. Reyes, M. C. González, A. Gómez, H. Martínez, and J. Vergara, Experimental Study of Ethanol and Helium Mixture Glow Discharge, IEEE Transactions on Plasma Science 47 (2019) 445, https://doi.org/10.1109/TPS.2018.2863716
K. Reimann, K. Syassen, Raman scattering and photoluminescence in Cu2O under hydrostatic pressure, Physical Review B. 39, (1989), https://doi.org/10.1103/PhysRevB. 39.11113
A. Compaan, Surface damage effects on allowed and forbidden phonon raman scattering in cuprous oxide, Solid State Communications, 6 (1975) 263, https://doi.org/10.1016/0038-1098(75)90171-4
T. Sander et al., Correlation of intrinsic point defects and the Raman modes of cuprous oxide, Phys. Rev. B. 90 (2014) 04523, https://doi.org/10.1103/PhysRevB.90.045203
M. Ohring, The Materials Science of Thin Films. Academic Press, (New Jersey. 1992)
K. Tomas and B. Annemie, Splitting of CO2 by vibrational excitation in non-equilibrium plasmas: A reaction kinetics model, Plasma Sources Sci. Technol., 23 (2014) 045004, https://doi.org/10.1088/0963-0252/23/4/045004
M. Kraus, W. Egli, K. Haffner, B. Eliasson, U. Kogelschatz, and A. Wokaun, Investigation of mechanistic aspects of the catalytic CO2reforming of methane in a dielectric-barrier discharge using optical emission spectroscopy and kinetic modeling, Phys. Chem. Chem. Phys. 4 (2002) 668, https://doi.org/10.1039/B108040G
X. Tu, White head J. C., Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: Understanding the synergistic effect at low temperature, Appl. Catal. 125 (2012) 439, https://doi.org/10.1016/j.apcatb.2012.06.006
A. Kumar, P. Ann Lin, A. Xue, B. Hao, Y. Khin Yap and R. Mohan Sankaran, Formation of nanodiamonds at near-ambient conditions via microplasma dissociation of ethanol vapour, Nature Communication 4 (2013) 2618, https://doi.org/10.1038/ncomms3618
G. García-Cosio, M. Calixto-Rodríguez, H. Martínez, Lowpressure plasma discharge of Ar/N2/CO2 ternary mixture. Am. Phys. Soc. 54 (2009)
X. Zhu, X. Gao, C. Zheng, Z. Wang, M. Ni, and X. Tu, Plasmacatalytic removal of a low concentration of acetone in humid conditions, RSC Adv. 4 (2014) 37796, https://doi.org/10.1039/C4RA05985A
Y. Babou, P. Riviere, M.Y. Perrin and A. Soufiani, Spectroscopic study of microwave plasma of CO2 and CO2-N2 mixtures at atmospheric pressure, Plasma Sources Sci. Technol. 17 (2008) 045010, https://doi.org/10.1088/0963-0252/17/4/045010
S. Kameshima, K. Tamura, Y. Ishibashi, and T. Nozaki, Pulsed dry methane reforming in plasma-enhanced catalytic reaction. Catal. Today 256 (2015) 67, https://doi.org/10.1016/j.cattod.2015.05.011
T. Volker and I. B Gornushkin, Importance of physical units in the Boltzmann plot method, J. Anal. At. Spectrom. 37 (2022) 1972, https://doi.org/10.1039/D2JA00241H
J. J. Camacho, J M. L. Poyato, l. Diaz and M. Santos. Optical emission studies of nitrogen plasma generated by IR CO2 laser pulses, J. Phys. B: At. Mol. Opt. Phys. 40, (2007) 4573. https://doi.org/10.1007/s11090-011-9307-2
M. Kono, M. M. Skoric. Nonlinear Physics of Plasma, Springer Series on Atomic, Optical, and Plasma Physics 978- 3-642-14693-0, (2010) . https://doi.org/10.1007/978-3-642-14694-7
N. Zhang et al., Electron Temperature and Density of the Plasma Measured by Optical Emission Spectroscopy in VLPPS Conditions, Journal of Thermal Spray Technology 20 (2011) 1321. https://doi.org/10.1007/s11666-011-9681
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 M. C. González, V. H. Castrejo-Sanchez, P. G. Reyes, A. Gómez, H. Martínez, J. Vergara, C. Torres

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
