Comprehensive review of chemical cleaning in polyvinylidene fluoride/graphene oxide-based membrane for oilfield-produced water treatment

Authors

DOI:

https://doi.org/10.31349/RevMexFis.71.061002

Keywords:

Chemical cleaning, PVDF/GO-based membranes, OPW treatment

Abstract

The high demand for oil results in an oilfield-produced water (OPW) production increment. The management of OPW presents a significant environmental and industrial challenge, attributed to its intricate composition, which encompasses hydrocarbons, suspended solids, and salts. Polyvinylidene fluoride (PVDF)/graphene oxide (GO)-based membranes, represent effective options for oil-water separation, attributed to their enhanced mechanical strength, hydrophilicity, and resistance to fouling. Maintaining the durability and performance of these membranes requires effective chemical cleaning strategies to mitigate fouling issues. This review discusses the fouling mechanism that takes place in OPW treatment, reviews chemical cleaning of the membranes utilized in OPW treatment, and compares the chemical cleanability of PVDF/GO-based membranes. The findings indicate that the chemical cleaning process of PVDF/GO-based membrane can be aligned with that of the PVDF membrane. The incorporation of GO in PVDF-based membranes can mitigate membrane fouling. The use of chemicals can be decreased as fouling decreases. This mitigates potential harm to the membrane during the chemical cleaning procedure, particularly when employing chemicals that are susceptible to resulting in damage. When the fouling is reduced, the chemicals used can be reduced, hence reducing the potential damage to the membrane during the chemical cleaning process, especially when using chemicals prone to causing damage. This study analyses recent developments and proposes future directions to optimize the cleaning process, enhancing the sustainability and operational efficiency of PVDF/GO-based membranes in OPW treatment applications.

References

A. Rajbongshi and S.B. Gogoi, A review on oilfield produced water and its treatment technologies, Pet. Res., 9 (2024) 640, https://doi.org/10.1016/j.ptlrs.2024.06.003

H. Zhang, C. Gao, H. Zhang, N. Song, and Q. Cao, Recent advances on the treatment of oilfield-produced water by advanced oxidation processes: A review, Water Reuse, 14 (2024) 190, https://doi.org/10.2166/wrd.2024.003

D.O. Omokpariola, J.O. Omokpariola, D. Omeodisemi Omokpariola, E. Chioma, and O. Omokpariola, Risk assessment of polycyclic aromatic hydrocarbons and total petroleum hydrocarbons in oilfield produced water and sea water at gulf of guinea oilfield, Adv. J. Chem.Sec B. Nat. Prod. and Med. Chem., 3 (2021) 68, https://doi.org/10.22034/ajcb.2021.121909

H. Patni and B. Ragunathan, Recycling and reusage of oilfield produced water: A review, Mat Today Proc, Elsevier Ltd, 77 (2023) 307. https://doi.org/10.1016/j.matpr.2022.11.372

N.A. Ogolo, O.C. Anih and M.O. Onyekonwu, Sources and effects of environmental pollution from oil and gas industrial operations, Arab. J. Chem. Environ. Res. 09 (2022) 98, www.mocedes.org

J.E. Johnston, E. Lim, and H. Roh, Impact of upstream oil extraction and environmental public health: A review of the evidence, Sci Total Environ., 657 (2019) 187, https://doi.org/10.1016/j.scitotenv.2018.11.483

E. J. Folkerts, and G.G. Goss, Investigating the potential toxicity of hydraulic fracturing flowback and produced water spills to aquatic animals in freshwater environments: a north american perspective, Rev. Environ. Contam. Toxicol, 254 (2021) 1, https://doi.org/10.1007/398 2020 43.9

U.W.R. Siagian, L. Lustiyani, K. Khoiruddin, S. Ismadji, I.G. Wenten, and S. Adisasmito, From waste to resource: Membrane technology for effective treatment and recovery of valuable elements from oilfield produced water, Environ. Pollution 340 (2024). https://doi.org/10.1016/j.envpol.2023.122717

N.A. Alenazi, M.A. Hussein, K.A. Alamry, and A.M. Asiri, Modified polyether-sulfone membrane: A mini review, Des. Monomers Polym., 20 (2017) 532, https://doi.org/10.1080/15685551.2017.1398208

N. Baig, B. Salhi, I.A. Khan, I.H. Aljundi, and N.A. Khan, Thin polyamide layer crosslinked graphene-oxide based ceramic membranes for efficient separation of the surfactant stabilized oil-in-water emulsions, Chem. Eng. Res. and Des., 208 (2024) 52, https://doi.org/10.1016/j.cherd.2024.06.044

X. Tian et al., Nacre-inspired graphene oxide/polyethyleneimine-based ultra-thin heterogeneous superwetting membrane for highly stable separation of oilin-water emulsions, Sep Purif Technol 356, (2025). https://doi.org/10.1016/j.seppur.2024.129991

S.L. Tan and S. El Meragawi, Superhydrophilic and underwater superoleophobic Graphene oxide-Phytic acid membranes for efficient separation of oil-in-water emulsions, 314 (2023) https://ssrn.com/abstract=4302706

E.M. Jordan, M. Milazzo, S.A. Chew, and S. Danti, Biomaterials and devices for immunotherapy, Eng Technol and Clinical Translation, 3 (2022) 97, https://doi.org/10.1016/B978-0-323-90949-5.00004-8

R. Dallaev, T. Pisarenko, D. Sobola, F. Orudzhev, S. Ramazanov, and T. Trčka, Brief review of pvdf properties and applications potential, polymers (Basel) 14 (2022). https://doi.org/10.3390/polym14224793

S. Mohammadpourfazeli et al., Future prospects and recent developments of polyvinylidene fluoride (PVDF) piezoelectric polymer; fabrication methods, structure, and electromechanical properties, RSC Adv, 13, (2023) 370, https://doi.org/10.1039/d2ra06774a

W. Miao, Z.-K. Li, X. Yan, Y.-J. Guo, and W.- Z. Lang, Improved ultrafiltration performance and chlorine resistance of PVDF hollow fiber membranes via doping with sulfonated graphene oxide, Chem. Eng. J., 317 (2017) 901 https://doi.org/10.1016/j.cej.2017.02.121

A.N. Ghulam, O.A.L. dos Santos, L. Hazeem, B. Pizzorno Backx, M. Bououdina, and S. Bellucci, Graphene oxide (go) materials-applications and toxicity on living organisms and environment, J. Funct. Biomater, 13, (2022). https://doi.org/10.3390/jfb13020077

A. Venault, C.H. Chiang, H.Y. Chang, W.S. Hung, and Y. Chang, Graphene oxide/PVDF VIPS membranes for switchable, versatile and gravity-driven separation of oil and water, J. Memb. Sci., 565 (2018) 131, https://doi.org/10.1016/j.memsci.2018.08.018

J. Cui, A. Xie, Z. Yan, and Y. Yan, Fabrication of crosslinking modified PVDF/GO membrane with acid, alkali and salt resistance for efficient oil-water emulsion separation, Sep. Purif. Technol., 265 (2021) https://doi.org/10.1016/j.seppur.2021.118528

Y. Zhao, X. Yang, Z. Cheng, C.H. Lau, J. Ma, and L. Shao, Surface manipulation for prevention of migratory viscous crude oil fouling in superhydrophilic membranes, Nat. Commun., 14 (2023) https://doi.org/10.1038/s41467-023-38419-3

J. Wang et al., How to extend the lifetime of RO membrane? From the perspective of the end-of-life RO membrane autopsy, Desalination, 561, (2023) 116702. https://doi.org/10.1016/j.desal.2023.116702

D. Zhao and S. Yu, A review of recent advance in fouling mitigation of NF/RO membranes in water treatment: pretreatment, membrane modification, and chemical cleaning, Desalin, Water Treat, 55 (2015) 870-891. https://doi.org/10.1080/19443994.2014.928804

O. Ferrer, B. Lefevre, G. Prats, X. Bernat, O. Gibert, and M. Paraira, Reversibility of fouling on ultrafiltration membrane by backwashing and chemical cleaning: differences in organic fractions behaviour, Desalin. Water Treat, 57 (2016) 8593, https://doi.org/10.1080/19443994.2015.1022807

W. Yu, N. Graham, and T. Liu, Prevention of UF membrane fouling in drinking water treatment by addition of H2O2 during membrane backwashing, Water Res. 149 (2019) 394, https://doi.org/10.1016/j.watres.2018.11.006

D.S. Rajendran et al., Recent advances in various cleaning strategies to control membrane fouling: a comprehensive review, Clean. Technol. Environ. Policy, (2024) https://doi.org/10.1007/s10098-024-03000-z

A. Gul, J. Hruza, and F. Yalcinkaya, Fouling and chemical cleaning of microfiltration membranes: A mini-review, Polymers (Basel) 13 (2021). https://doi.org/10.3390/polym13060846

S. Park, J.S. Kang, J.J. Lee, T.K.Q. Vo and H.S. Kim, Application of physical and chemical enhanced backwashing to reduce membrane fouling in the water treatment process using ceramic membranes, Membranes (Basel) 8 (2018). https://doi.org/10.3390/membranes8040110

K. Fang, W. Chen, C. Liu, D. Lin, J. Nie, X. Du, and Y. Luo, Chemical cleaning enhanced birnessite functional layer formed in gravity driven ceramic membrane for manganese-containing water purification, Sep Purif Technol, 359 (2025) 130801. https://doi.org/10.1016/j.seppur.2024.130801

H. Xiao, N. Zhang, J. Li, M. Zhong, P. Xie, S. Wang, and J. Ma, Simultaneous flux recovery and trade-off breakthrough: New insights into repeated radical-based membrane cleaning, Sep Purif Technol 363 (2025) 132105. https://doi.org/10.1016/j.seppur.2025.132105

Y. Li, Y. Xu, L.C. Rietveld, and S.G.J. Heijman, Calcium carbonate precoating/acid cleaning method for fouling control in ceramic nanofiltration membranes, Sep Purif Technol 356 (2025). https://doi.org/10.1016/j.seppur.2024.130002

Z. Zhang, Z. Liu, and J. Sun, Facile preparation of superhydrophilic and underwater superoleophobic mesh for oil/water separation in harsh environments, J. Dispers. Sci. Technol. 40 (2019) 784, https://doi.org/10.1080/01932691.2018.1476871

Y. Zhang, Q. Shi, and Z. Guo, Harsh environment-tolerant, superhydrophilic and underwater superoleophobic cellulose hydrogel-coated copper foam for efficient and repeatable oil/water separation, New J. Chem. 48, (2024) 16222, https://doi.org/10.1039/D4NJ03339F

H. Zhang, G. Guo, L. Liu, F. Tao, J. Ren, and L. Zheng, Durable, water-cleanable, superhydrophilic coatings for oil/water separation under harsh conditions, J. Saudi Chem. Soc., 23 (2019) 1007, https://doi.org/10.1016/j. jscs.2019.05.006

S. Jiménez, M.M. Micó, M. Arnaldos, F. Medina, and S. Contreras, State of the art of produced water treatment, Chemosphere 192 (2018) 186, https://doi.org/10.1016/j.chemosphere.2017.10.139

Y. Liu et al., A review of treatment technologies for produced water in offshore oil and gas fields, Science of The Total Environment 775 (2021) 145485, https://doi.org/10.1016/j.scitotenv.2021.145485

A.E. Mansi, S.M. El-Marsafy, Y. Elhenawy, and M. Bassyouni, Assessing the potential and limitations of membranebased technologies for the treatment of oilfield produced water, Alexandria Eng. J. 68 (2023) 787, https://doi.org/10.1016/ j.aej.2022.12.013. 37. S. Ghafoori et al.,, New advancements, challenges, and future needs on treatment of oilfield produced water: A state-of-theart review, Sep. Purif. Technol., 289 (2022) 120652. https://doi.org/10.1016/j.seppur.2022.120652

R. Hasanzadeh, B.A. Souraki, and A. Pendashteh, Insights into the foulants characteristics in a walnut shell biofilmmembrane bioreactor during treatment of hypersaline oilfield produced water, J. Water Proc. Engineering 54 (2023) 104011. https://doi.org/10.1016/j.jwpe.2023.104011

Y.L. Lin, Membrane fouling control in water treatment, membranes (basel) 12, (2022). https://doi.org/10.3390/membranes12060551

Y. Guo, T. yu Li, K. Xiao, X. mao Wang, and Y.F. Xie, Key foulants and their interactive effect in organic fouling of nanofiltration membranes, J Memb. Sci. 610 (2020). https://doi.org/10.1016/j.memsci.2020.118252

O. Samuel et al.,, Oilfield-produced water treatment using conventional and membrane-based technologies for beneficial reuse: A critical review, J Environ. Manage, 308 (2022) 114556. https://doi.org/10.1016/j.jenvman.2022.114556

S. Shirazi, C.J. Lin, and D. Chen, Inorganic fouling of pressuredriven membrane processes: A critical review, Desalination 250 (2010) 236, https://doi.org/10.1016/j.desal.2009.02.056

L. Zheng et al., Insight into the microbial distribution and succession and biofouling mechanism in membrane distillation for desulfurization wastewater treatment, Chem. Eng. J., 428 (2022) 131097. https://doi.org/10.1016/j.cej.2021.131097

N. AlSawaftah, W. Abuwatfa, N. Darwish, and G.A. Husseini, A review on membrane biofouling: prediction, characterization, and mitigation, Membranes (Basel) 12 (2022). https://doi.org/10.3390/membranes12121271

E. Virga, R.W. Field, P.M. Biesheuvel, and W.M. de Vos, Theory of oil fouling for microfiltration and ultrafiltration membranes in produced water treatment, J Colloid Interface Sci 621 (2022) 431, https://doi.org/10.1016/j.jcis.2022.04.039

A. Alborzi, I.-M. Hsieh, D. Reible, and M. Malmali, Analysis of fouling mechanism in ultrafiltration of produced water, J. Water Proc. Engineering 49 (2022) 102978. https://doi.org/10.1016/j.jwpe.2022.102978

J.C. Te Lin, D.J. Lee, and C. Huang, Membrane fouling mitigation: Membrane cleaning, Sep Sci Technol 45 (2010) 858, https://doi.org/10.1080/01496391003666940

T.A. Otitoju, A.L. Ahmad, and B.S. Ooi, Polyvinylidene fluoride (PVDF) membrane for oil rejection from oily wastewater: A performance review, J. Water Proc. Engineering 14 (2016) 41, https://doi.org/10.1016/j.jwpe.2016.10. 011

S. Hajibabania, A. Antony, G. Leslie, and P. Le- Clech, Relative impact of fouling and cleaning on PVDF membrane hydraulic performances, Sep. Purif. Technol. 90 (2012) 204, https://doi.org/10.1016/j.seppur.2012.03.001.12

M.F. Rabuni, N.M. Nik Sulaiman, M.K. Aroua, C. Yern Chee, and N. Awanis Hashim, Impact of in situ physical and chemical cleaning on PVDF membrane properties and performances, Chem. Eng. Sci., 122 (2015) 426, https://doi.org/10.1016/j.ces.2014.09.053

Y. Zhang, J. Wang, F. Gao, Y. Chen, and H. Zhang, A comparison study: The different impacts of sodium hypochlorite on PVDF and PSF ultrafiltration (UF) membranes, Water Res., 109 (2017) 227, https://doi.org/10.1016/j.watres.2016.11.022

M. Han et al., Unveiling the Impacts of Sodium Hypochlorite on the Characteristics and Fouling Behaviors of Different Commercial Polyvinylidene Fluoride Hollow Fiber Membranes, Membranes, 12 (2022). https://doi.org/10. 3390/membranes12100965

B. Jia et al., NOM foulant-hypochlorite interactions impact PVDF UF membrane ageing, Sep Purif Technol 364 (2025). https://doi.org/10.1016/j.seppur. 2025.132469.

L. Wang, C. Tian, R. Dai, and Z. Wang, Eco friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism, Chinese Chemical Letters 35 (2024) 109356. https://doi.org/10.1016/j.cclet.2023.109356

C. Tian, J. Chen, X. Li, R. Dai, and Z. Wang, Chemical cleaning-solvent treatment-hydrophilic modification strategy for regenerating end-of-life PVDF membrane, J. Memb. Sci. 669 (2023). https://doi.org/10.1016/j.memsci.2022.121325

H. Yu, S. Shangguan, H. Yang, H. Rong, and F. Qu, Chemical cleaning and membrane aging of poly(vinylidene fluoride) (PVDF) membranes fabricated via non-solvent induced phase separation (NIPS) and thermally induced phase separation (TIPS) Sep. Purif. Technol., 313 (2023). https://doi.org/10.1016/j.seppur.2023.123488

G. Liu et al., Chemical cleaning of ultrafiltration membranes for polymer-flooding wastewater treatment: Efficiency and molecular mechanisms, J. Memb. Sci. 545 (2018) 348, https://doi.org/10.1016/j.memsci.2017.08.062

T. Palanisamy, S.A.A. Tabatabai, T. Zhang, and T.O. Leiknes, Role of surfactants in cleaning of PVDF ultrafiltration membranes fouled by emulsified cutting oil, J. of Water Proc. Engineering 40 (2021). https://doi.org/10.1016/j.jwpe.2021.101923

A. Gul, J. Hruza, L. Dvorak, and F. Yalcinkaya, Chemical Cleaning Process of Polymeric Nanofibrous Membranes, Polymers (Basel) 14 (2022). https://doi.org/10.3390/polym14061102

Q. Zhang et al., Preparation of GO@DCN nanocomposite modified PVDF membranes for improved membrane performance and exploration of formation mechanism, J Memb Sci 683 (2023) 121859. https://doi.org/10.1016/j.memsci.2023.121859

S.L. Tan, S. El Meragawi, M. Majumder, and E. Von Lau, Superhydrophilic and underwater superoleophobic Graphene oxide-Phytic acid membranes for efficient separation of oilin-water emulsions, Sep. Purif. Technol. 314 (2023). https://doi.org/10.1016/j.seppur.2023.123544

A. Avornyo and C. V. Chrysikopoulos, Applications of graphene oxide (GO) in oily wastewater treatment: Recent developments, challenges, and opportunities, J. Environ Manage 353 (2024). https://doi.org/10.1016/j.jenvman.2024.120178

L.Y. Ng, A.W. Mohammad, C.P. Leo, and N. Hilal, Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review, Desalination 308 (2013) 15, https://doi.org/10.1016/j.desal.2010.11.033

A. Tabernero, A. González-Garcinuño, S. Cardea, I. De Marco, and E. M. Martín del Valle, PVDF-based membranes in biotechnology, Sep Purif Technol 365 (2025) 132636. https://doi.org/10.1016/j.seppur.2025.132636

K.P. Matabola, T.C. Mokhena, M.F. Bambo, T.H. Mokhothu, J.S. Modise, and M.J. Mochane, PVDF-Based Electrospun Nanofibers for Oil/Water Separation: A Review, Macromol Mater Eng 309 (2024) 2300390. https://doi.org/10.1002/mame.202300390

M. Y. Zhang, et al., Patterning of graphene using wet etching with hypochlorite and UV light, Sci Rep 12 (2022). https://doi.org/10.1038/s41598-022-08674-3

S. Mancillas-Salas, A.C. Reynosa-Martinez, J. Barroso-Flores and E. Lopez-Honorato, Impact of secondary salts, temperature, and pH on the colloidal stability of graphene oxide in water, Nanoscale Adv (2022). https://doi.org/10.1039/d2na00070a

C. Zhao, X. Xu, J. Chen, G. Wang, and F. Yang, Highly effective antifouling performance of PVDF/graphene oxide composite membrane in membrane bioreactor (MBR) system, Desalination 340 (2014) 59-66. https://doi.org/10.1016/j.desal.2014.02.022

A.S. Embaye et al., High performance anti fouling photo thermal membranes for enhanced membrane distillation crystallization, Desalination, 608 (2025). https://doi.org/10.1016/j.desal.2025.118847

A. Saeedi-Jurkuyeh, A.J. Jafari, R.R. Kalantary, and A. Esrafili, A novel synthetic thin-film nanocomposite forward osmosis membrane modified by graphene oxide and polyethylene glycol for heavy metals removal from aqueous solutions, React. Funct. Polym. 146 (2020) 104397. https://doi.org/10.1016/j.reactfunctpolym.2019.104397

L. Chen et al., High performance graphene oxide nanofiltration membrane prepared by electrospraying for wastewater purification, Carbon N Y 130 (2018) 487, https://doi.org/10. 1016/j.carbon.2018.01.062

G.S. Lai et al., Tailor-made thin film nanocomposite membrane incorporated with graphene oxide using novel interfacial polymerization technique for enhanced water separation, Chem. Eng. J. 344 (2018) 524, https://doi.org/10.1016/j. cej.2018.03.116

Downloads

Published

2025-11-01

How to Cite

[1]
F. Febriani, “Comprehensive review of chemical cleaning in polyvinylidene fluoride/graphene oxide-based membrane for oilfield-produced water treatment”, Rev. Mex. Fís., vol. 71, no. 6 Nov-Dec, pp. 061002 1–, Nov. 2025.