Bound and scattering state energies of Hulthén-Hellmann potential with external field and topological defects

Authors

  • U. S. Okorie Akwa Ibom State University
  • G. J. Rampho University of South Africa
  • N. Ikot University of Port Harcourt

DOI:

https://doi.org/10.31349/RevMexFis.71.060502

Keywords:

Bound state; scattering state; combined potential; topological defect

Abstract

Topological defect and external fields influence on potential models has been significantly proven to shape the behaviour and interactions of different constituent quantum systems. Due on this fact, we employ the Nikiforov-Uvarov functional analysis method to solve the Schrödinger equation with Hulthén-Hellmann Potential, embedded with Aharonov-Bohm flux field and point-like global monopole defect. Analytical expression of the energies with topological defect and AB flus field was obtained. In addition, the scattering phase shift expression of the combined potential was obtained under the influence of the global monopole and external field. Numerical and graphical variations have been presented for various quantum states, flux field and topological defect values. It is observed that, energy eigenvalues and scattering phase shift of the combined potential are significantly affected by the topological defect parameters, Aharonov-Bohm flux field, screening parameter and quantum state values considered, in the curved space-time. Conventional results of this study in Minkowski space-time are realized as the topological defect parameter approaches unity, in the absence of the AB flux field and these results agree with available results in literature. The results in this study also point relatively to some physical phenomena in chemical and molecular physics.

References

H. Hassanabadi, S. Zare, J. Kriz, and B. C. Lutfuoglu, Electric quadrupole moment of a neutral non-relativistic particle in the presence of screw dislocation, EPL 132 (2020) 60005. https://doi.org/10.1209/0295-5075/132/60005

S. Zare, H. Hassanabadi, and M. de Montigny, Nonrelativistic particles in the presence of a Cariñena-Perelomov-Rañada-Santander oscillator and a disclination, Int. J. Mod. Phys. A 35 (2020) 2050071. https://doi.org/10.1142/S0217751X20500712

W. C. F. da Silva, and K. Bakke, Non-relativistic effects on the interaction of a point charge with a uniform magnetic field in the distortion of a vertical line into a vertical spiral spacetime, Class. Quantum Grav. 36 (2019) 235002. https://doi.org/10.1088/1361-6382/ab4f03

B. C. Lutfuoglu, J. Kriz, S. Zare, and H. Hassanabadi, Interaction of the magnetic quadrupole moment of a non-relativistic particle with an electric field in the background of screw dislocations with a rotating frame, Phys. Scr. 96 (2021) 015005. https://doi.org/10.1088/1402-4896/abc78b

H. Chen, S. Zare, H. Hassanabadi, and Z. W. Long, Quantum description of the moving magnetic quadrupole moment interacting with electric field configurations under the rotating background with the screw dislocation, Ind. J. Phys. 96 (2022) 4219. https://doi.org/10.1007/s12648-022-02328-w

S. Zare, H. Hassanabadi, A. Guvendi, and W. S. Chung, On the interaction of a Cornell-type nonminimal coupling with the scalar field under the background of topological defects, Int. J. Mod. Phys. A 37 (2022) 2250033. https://doi.org/10.1142/S0217751X22500336

S. S. Alves, M. M. Cunha, H. Hassanabadi, and E. O. Silva, Approximate analytical solutions of the Schrödinger equation with Hulthén potential in the global monopole spacetime, Universe 9 (2023) 132. https://doi.org/10.3390/universe9030132

A. Vilenkin, Cosmic strings and domain walls, Phys. Rep. 121 (1985) 263. https://doi.org/10.1016/0370-1573(85)90033-X

M. Barriola, and A. Vilenkin, Gravitational field of a global monopole, Phys. Rev. Lett. 63 (1989) 341. https://doi.org/10.1103/PhysRevLett.63.341

T. Kibble, and A. Srivastava, Condensed matter analogues of cosmology, J. Phys.: Cond. Matter 25 (2013) 400301. https://doi.org/10.1088/0953-8984/25/40/400301

K. Bakke, C. Furtado, and S. Sergeenkov, Holonomic quantum computation associated with a defect structure of conical graphene, EuroPhys. Lett. 87 (2009) 30002. https://doi.org/10.1209/0295-5075/87/30002

J. Carvalho, C. Furtado, and F. Moraes, Dirac oscillator interacting with a topological defect, Phys. Rev. A 84 (2011) 032109. https://doi.org/10.1103/PhysRevA.84.032109

A. Boumali, and N. Messai, Klein-Gordon oscillator under a uniform magnetic field in cosmic string space-time, Can. J. Phys. 92 (2014) 1460. https://doi.org/10.1139/cjp-2013-0431

R. L. L. Vitoria, and K. Bakke, ´ Relativistic quantum effects of confining potentials on the Klein-Gordon oscillator, Eur. Phys. J. Plus 131 (2016) 36. https://doi.org/10.1140/epjp/i2016-16036-4

Z. Wang, Z. Long, C. Long, and M. Wu, Relativistic quantum dynamics of a spinless particle in the Som-Raychaudhuri spacetime, Eur. Phys. J. Plus 130 (2015) 36. https://doi.org/10.1140/epjp/i2015-15036-2

R. D. Lambaga, and H. S. Ramadhan, Gravitational field of global monopole within the Eddington-inspired Born-Infeld theory of gravity, Eur. Phys. J. C 78 (2018) 436. https://doi.org/10.1140/epjc/s10052-018-5906-x

A. Boumali, and H. Aounallah, Exact solutions of vector bosons in the presence of the Aharonov-Bohm and Coulomb potentials in the gravitational field of topological defects in non-commutative space-time, Rev. Mex. de Fis. 66 (2020) 192. https://doi.org/10.31349/RevMexFis.66.192

E. A. F. Braganca, R. L. L. Vitoria, H. Belich, and E. R. B. de Mello, Relativistic quantum oscillators in the global monopole spacetime, Eur. Phys. J. C 80 (2020) 206. https://doi.org/10.1140/epjc/s10052-020-7774-4

R. L. L. Vitoria, and H. Belich, Harmonic oscillator in an environment with a pointlike defect, Phys. Scr. 94 (2019) 125301. https://doi.org/10.1088/1402-4896/ab3bc1

K. Bakke, and C. Furtado, Analysis of the interaction of an electron with radial electric fields in the presence of a disclination, Int. J. Geo. Meth. Mod. Phys. 16 (2019) 1950172. https://doi.org/10.1142/S021988781950172X

N. Soheibi, M. Hamzavi, M. Eshghi, and S. M. Ikhdair, Screw dislocation and external fields effects on the Kratzer pseudodot, Eur. Phys. J. B 90 (2017) 212. https://doi.org/10.1140/epjb/e2017-80468-9

C. Filgueiras, M. Rojas, G. Aciole, and E. O. Silva, 2DEG on a cylindrical shell with a screw dislocation, Phys. Lett. A 379 (2015) 2110. https://doi.org/10.1016/j.physleta.2015.06.035

L. C. N. Santosa, and Jr. C. C. Barros, Relativistic quantum motion of spin-0 particles under the influence of noninertial effects in the cosmic string spacetime, Eur. Phys. J. C 78 (2018) 13. https://doi.org/10.1140/epjc/s10052-017-5476-3

F. Ahmed, The generalized Klein-Gordon oscillator in the background of cosmic string space-time with a linear potential in the Kaluza-Klein theory, Eur. Phys. J. C 80 (2020) 211. https://doi.org/10.1140/epjc/s10052-020-7781-5

A. Bouzenada, A. Boumali, and F. Serdouk, Thermal properties of the 2D Klein-Gordon oscillator in a cosmic string space-time, Theor. Math. Phys. 216 (2023) 1055. https://doi.org/10.1134/S0040577923070115

K. Bakke, Noninertial effects on the Dirac oscillator in a topological defect spacetime, Eur. Phys. J. Plus, 127 (2012) 82. https://doi.org/10.1140/epjp/i2012-12082-2

K. Bakke, and C. Furtado, On the interaction of the Dirac oscillator with the Aharonov-Casher system in topological defect backgrounds, Ann. Phys. 336 (2013) 489. https://doi.org/10.1016/j.aop.2013.06.007

M. J. Beuno, J. L. de Melo, C. Furtado, and A. M. de M. Carvalho, Quantum dot in a graphene layer with topological defects, Eur. Phys. J. Plus, 129 (2014) 201. https://doi.org/10.1140/epjp/i2014-14201-5

K. Bakke, and H. Mota, Dirac oscillator in the cosmic string spacetime in the context of gravity’s rainbow, Eur. Phys. J. Plus, 133 (2018) 409. https://doi.org/10.1140/epjp/i2018-12268-6

S. S. Alves, F. dos S. Azevedo, C. Filgueiras, and E. O. Silva, Exact and approximate bound state solutions of the Schrödinger equation with a class of Kratzer-type potentials in the global monopole spacetime, Chin. J. Phys. 88 (2024) 609. https://doi.org/10.1016/j.cjph.2023.10.012

B. Chakraborty, K. S. Gupta, and S. Sen, Coulomb screening in graphene with topological defects, Eur. Phys. J. B 88 (2015) 155. https://doi.org/10.1140/epjb/e2015-60129-y

P. Nwabuzor, C. O. Edet, A. N. Ikot, U. S. Okorie, M. Ramantswana, R. Horchani, A. H. Abdel-Aty, and G. J. Rampho, Analyzing the Effects of Topological Defect (TD) on the Energy Spectra and Thermal Properties of LiH, TiC and I2 Diatomic Molecules, Entropy 23 (2021) 1060. https://doi.org/10.3390/e23081060

C. O. Edet, and A. N. Ikot, Effects of Topological Defect on the Energy Spectra and Thermo-magnetic Properties of Diatomic Molecule, J. Low Temp. Phys. 203 (2021) 84. https://doi.org/10.1007/s10909-021-02577-9

A. N. Ikot, U. S. Okorie, P. Sawangtong, and R. Horchani, Effects of Topological Defects and AB Fields on the Thermal Properties, Persistent Currents and Energy Spectra with an Exponential-Type Pseudoharmonic Potential, Int. J. Theor. Phys. 62 (2023) 197. https://doi.org/10.1007/s10773-023-05453-2

L. K. Permatahati, C. Cari, A. Suparmi, and H. Harjana, Topological effects on relativistic energy spectra of diatomic molecules under the magnetic field with Kratzer potential and thermodynamic-optical properties, Int. J. Theor. Phys. 62 (2023) 246. https://doi.org/10.1007/s10773-023-05494-7

V. Skogvoll, J. Ronning, M. Salvalaglio, and L. Angheluta, A unified field theory of topological defects and non-linear local excitations, Comp. Mat. 9 (2023) 122. https://doi.org/10.1038/s41524-023-01077-6

O. J. Oluwadare, K. E. Thylwe, and K. J. Oyewumi, Nonrelativistic phase shifts for scattering on generalized radial Yukawa potentials, Commun. Theor. Phys. 65 (2016) 434. https://doi.org/10.1088/0253-6102/65/4/434

O. J. Oluwadare, and K. J. Oyewumi, The semi-relativistic scattering states of the two-body spinless Salpeter equation with the Varshni potential model, Eur. Phys. J. Plus 132 (2017) 277. https://doi.org/10.1140/epjp/i2017-11549-x

O. J. Oluwadare, and K. J. Oyewumi, Scattering states solutions of Klein-Gordon equation with three physically solvable potential models, Chin. J. Phys. 55 (2017) 2422. https://doi.org/10.1016/j.cjph.2017.10.007

A. N. Ikot, U. S. Okorie, G. J. Rampho, C. O. Edet, R. Horchani, A. Abdel-Aty, N. A. Alshehri, and S. K. Elagan, Bound and scattering state solutions of the Klein-Gordon equation with Deng-Fan potential in higher dimensions, FewBody Syst. 62 (2021) 101. https://doi.org/10.1007/s00601-021-01693-2

U. S. Okorie, A. N. Ikot, G. J. Rampho, M. C. Onyeaju, M. U. Ibezim-Ezeani, A. Abdel-Aty, and M. Ramantswana, Bound and scattering states of the Klein-Gordon equation for shifted Tietz-Wei potential with applications to diatomic molecules, Mol. Phys. 119 (2021) e1922773. https://doi.org/10.1080/00268976.2021.1922773

U. S. Okorie, A. N. Ikot, C. O. Edet, G. J. Rampho, R. Horchani, and H. Jelessi, Bound and scattering states solutions of the Klein-Gordon equation with generalized Mobius square potential in D-dimensions, Eur. Phys. J. D 75 (2021) 53. https://doi.org/10.1140/epjd/s10053-021-00059-x

S. S. Alves, M. M. Cunha, H. Hassanabadi, and E. O. Silva, Approximate analytical solutions of the Schrödinger equation with Hulthén potential in the global monopole spacetime, Universe 9 (2023) 132. https://doi.org/10.3390/universe9030132

C. O. Edet, and P. O. Okoi, Any l-state solutions of the Schrödinger equation for q-deformed Hulthén plus generalized inverse quadratic Yukawa potential in arbitrary dimensions, Rev. Mex. Fis. 65 (2019) 333. https://doi.org/10.31349/RevMexFis.65.333

C. A. Onate, O. Ebomwonyi, K. O. Dopamu, J. O. Okoro, and M. O. Oluwayemi, Eigen solutions of the D-dimensional Schrödinger equation with inverse trigonometry scarf potential and Coulomb potential, Chin. J. Phys. 56 (2018) 2538. https://doi.org/10.1016/j.cjph.2018.03.013

E. S. William, E. P. Inyang, and E. A. Thompson, Arbitrary l-solutions of the Schrödinger equation interacting with Hulthén-Hellmann potential model, Rev. Mex. de Fis. 66 (2020) 730. https://doi.org/10.31349/RevMexFis.66.730

F. Ahmed, Topological effects produced by point-like global monopole with Hulthén plus screened Kratzer potential on Eigenvalue solutions and NU-method, Phys. Scr. 98 (2023) 015403. https://doi.org/10.1088/1402-4896/aca6b3

R. L. Greene, and C. Aldrich, Variational wave functions for a screened Coulomb potential, Phys. Rev. A 14 (1976) 2363. https://doi.org/10.1103/PhysRevA.14.2363

A. K. Bhatia, Scattering and Its Applications to Various Atomic Processes: Elastic Scattering, Resonances, Photoabsorption, Rydberg States, and Opacity of the Atmosphere of the Sun and Stellar Objects, Atoms 8 (2020) 78. https://doi.org/10.3390/atoms8040078

A. K. Bhatia, Photodetachment of the positronium negative ion with excitation in the positronium atom, Mod. Concepts Mat. Sci. 1 (2020) 1. https://doi.org/10.3390/atoms7010002

A. K. Bhatia, Photodetachment of the positronium negative ion with excitation in the positronium atom, Atoms 7 (2018) 2. https://doi.org/10.33552/MCMS.2020.03.000553

A. N. Ikot, U. S. Okorie, P. O. Amadi, C. O. Edet, G. J. Rampho, and R. Sever, The Nikiforov-Uvarov-Functional Analysis (NUFA) Method: A new approach for solving exponentialtype potentials, Few-Body Syst. 62 (2021) 9. https://doi.org/10.1007/s00601-021-01593-5

A. F. Nikiforov, and V. B. Uvarov, Special Functions of Mathematical Physics, Birkhauser, Basel (1988). 54. C. Tezcan, and R. Sever, A general approach for the exact solution of the Schrödinger equation, Int. J. Theor. Phys. 48 (2008) 337. https://doi.org/10.1007/s10773-008-9806-y

B. J. Falaye, K. J. Oyewumi, S. M. Ikhdair, and M. Hamzavi, Eigensolution techniques, their applications and Fishers information entropy of the Tietz-Wei diatomic molecular model, Phys. Scr. 89 (2014) 115204. https://doi.org/10.1088/0031-8949/89/11/115204

Downloads

Published

2025-11-01

How to Cite

[1]
U. S. Okorie, G. J. Ramphoa, and N. Ikot, “Bound and scattering state energies of Hulthén-Hellmann potential with external field and topological defects”, Rev. Mex. Fís., vol. 71, no. 6 Nov-Dec, pp. 060502 1–, Nov. 2025.