Fisher information and quantum entropies of a 2D system under a pair of non-central scalar and vector potentials
DOI:
https://doi.org/10.31349/RevMexFis.71.061301Keywords:
Fisher information; quantum entropies; non-central Kratzer potential; vector potentialAbstract
In this study, we examine a 2 dimensional system influenced by a non-central potential consisting of a Kratzer potential with a dipole moment, along with a vector potential of the (AB) effect. We explore various information-theoretic measures, including Fisher information, Shannon entropy, Tsallis entropy, and Rényi entropy. Our numerical results show that the Fisher information increases with an increase in dissociation energy and decreases with rising dipole moment, Aharonov–Bohm potential strength, and both the radial and angular quantum numbers. In contrast, the Shannon entropy, the Tsallis entropy, and the Rényi entropy decrease with rising dissociation energy, while they increase with an increase in dipole moment, Aharonov–Bohm potential strength, as well as the principal and angular quantum numbers. These observations collectively indicate that the precision and localization of particles in space are enhanced by the increasing of the dissociation energy and reduced when the dipole moment, Aharonov–Bohm potential strength, and both the radial and angular quantum numbers increase.
References
T.M. Cover, J.A. Thomas, Elements of Information Theory, 2nd ed. (Wiley-Interscience, New York, 2006), https://doi.org/10.1002/0471200611
J.B.M. Uffink, Measures of uncertainty and the uncertainty principle, Doctoral dissertation, University of Utrecht (1990)
M.J.W. Hall, Universal geometric approach to uncertainty, entropy, and information, Phys. Rev. A 59 (1999) 2602, https://doi.org/10.1103/PhysRevA.59.2602
R.A. Fisher, Theory of Statistical Estimation, Proc. Cambridge Phil. Soc. 22 (1925) 700, https://doi.org/10.1017/S0305004100009580
B.R. Frieden, Science from Fisher Information, Cambridge University Press, Cambridge (2004), https://doi.org/10.1017/CBO9780511616907
M.J.W. Hall, Quantum Properties of Classical Fisher Information, Phys. Rev. A 62 (2000) 012107, https://doi.org/10.1103/PhysRevA.62.012107
M.J.W. Hall, Exact Uncertainty Relations, Phys. Rev. A 64 (2001) 052103, https://doi.org/10.1103/PhysRevA.64.052103
M. Portes de Albuquerque, I.A. Esquef, and A.R. Gesualdi Mello, Image thresholding using Tsallis entropy, Pattern Recognition Letters 25 (2004) 1059, https://doi.org/10.1016/j.patrec.2004.03.003
O. Sotolongo-Grau, D. Rodríguez-Pérez, J.C. Antoranz, O. Sotolongo-Costa, Tissue Radiation Response with Maximum Tsallis Entropy, Phys. Rev. Lett. 105 (2010) 158105, https://doi.org/10.1103/PhysRevLett.105.158105
R.J.V. dos Santos, Generalization of Shannon’s theorem for Tsallis entropy, J. Math. Phys. 38 (1997) 4104, https://doi.org/10.1063/1.532107
J.C. Angulo, J. Antolin, K.D. Sen, Fisher-Shannon plane and statistical complexity of atoms, Phys. Lett. A 372 (2008) 670, https://doi.org/10.1016/j.physleta.2007.07.077
H.E. Montgomery, K.D. Sen, Statistical complexity and Fisher-Shannon information measure of H + 2 , Phys. Lett. A 372 (2008) 2271, https://doi.org/10.1016/j.physleta.2007.11.041
D. Manzano, Statistical measures of complexity for quantum systems with continuous variables, Physica A 391 (2012) 6238, https://doi.org/10.1016/j.physa.2012.06.058
J.C. Angulo, J. Antolín, Atomic complexity measures in position and momentum spaces, J. Chem. Phys. 128 (2008) 164109, https://doi.org/10.1063/1.2907743
R.J. Yáñez, W. Van Assche, J.S. Dehesa, Position and momentum information entropies of the D-dimensional harmonic oscillator and hydrogen atom, Phys. Rev. A 50 (1994) 3065, https://doi.org/10.1103/PhysRevA.50.3065
J.S. Dehesa, S. López-Rosa, B. Olmos, R.J. Yáñez, Fisher information of D-dimensional hydrogenic systems in position and momentum spaces, J. Math. Phys. 47 (2006) 052104, https://doi.org/10.1063/1.2190335
J.S. Dehesa, S. López-Rosa, B. Olmos, R.J. Yáñez, Information measures of hydrogenic systems, Laguerre polynomials and spherical harmonics, J. Comput. Appl. Math. 179 (2005) 185, https://doi.org/10.1016/j.cam.2004.09.040
J.S. Dehesa, A. Martínez-Finkelshtein, V.N. Sorokin, Quantum-information entropies for highly excited states of single-particle systems with power-type potentials, Phys. Rev. A 66 (2002) 062109, https://doi.org/10.1103/PhysRevA.66.062109
E. Romera, P. Sánchez-Moreno, J.S. Dehesa, The Fisher information of single-particle systems with a central potential, Chem. Phys. Lett. 414 (2005) 468, https://doi.org/10.1016/j.cplett.2005.08.032
J.S. Dehesa, A. Martínez-Finkelshtein, V.N. Sorokin, Information-theoretic measures for Morse and Pöschl Teller potentials, Molecular Physics 104 (2006) 613, https://doi.org/10.1080/00268970500493243
P.A. Bouvrie, J.C. Angulo, J.S. Dehesa, Entropy and complexity analysis of Dirac-delta-like quantum potentials, Physica A 390 (2011) 2215, https://doi.org/10.1016/j.physa.2011.02.020
S. H. Patil, K.D. Sen, Uncertainty relations for modified isotropic harmonic oscillator and Coulomb potentials, Phys. Lett. A 362 (2007) 109, https://doi.org/10.1016/j.physleta.2006.11.045
A. Ghasemi, M.S. Hooshmandasl, M.K. Tavassoly, On the quantum information entropies and squeezing associated with the eigenstates of the isotonic oscillator, Phys. Scr. 84 (2011) 035007, https://doi.org/10.1088/0031-8949/84/03/035007
J.J. Omiste, R.J. Yáñez, J.S. Dehesa, Information-theoretic properties of the half-line Coulomb potential, J. Math. Chem. 47 (2010) 911, https://doi.org/10.1007/s10910-009-9611-8
W.A. Yahya, K.J. Oyewumi, K.D. Sen, Information and complexity measures for the ring-shaped modified Kratzer potential, Indian J. Chem. A 53A (2014) 1307
W.A. Yahya, K.J. Oyewumi, K.D. Sen, Position and momentum information-theoretic measures of the pseudoharmonic potential, Int. J. Quantum Chem. 115 (2015) 1543, https://doi.org/10.1002/qua.24971
C.A. Onate et al., Eigen solutions, Shannon entropy and Fisher information under the Eckart Manning Rosen potential model, J. Korean Phys. Soc. 70 (2017) 339, https://doi.org/10.3938/jkps.70.339
C.A. Onate et al., Relativistic Treatment of Spin-zero Particles Subjected to the Shifted Tietz-Wei Potential Model, J. Korean Phys. Soc. 73 (2018) 531, https://doi.org/10.3938/jkps.73.531
J.A. Obu, P.O. Okoi, U.S. Okorie, Relativistic and nonrelativistic treatment of Hulthen-Kratzer potential model in Ddimensions, Indian J. Phys. 95 (2021) 505, https://doi.org/10.1007/s12648-019-01638-w
C.A. Onate, A.N. Ikot, M.C. Onyeaju, O. Ebomwonyi, J.O.A. Idiodi, Effect of dissociation energy on Shannon and Rényi entropies, Karbala Int. J. Mod. Sci. 4 (2018) 134, https://doi.org/10.1016/j.kijoms.2017.12.004
A.N. Ikot, G.J. Rampho, P.O. Amadi, U.S. Okorie, M.J. Sithole, M.L. Lekala, Quantum information-entropic measures for exponential-type potential, Results Phys. 18 (2020) 103150, https://doi.org/10.1016/j.rinp.2020.103150
P.O. Amadi, A.N. Ikot, A.T. Ngiangia, U.S. Okorie, G.J. Rampho, H.Y. Abdullah, Shannon entropy and Fisher information for screened Kratzer potential, Int. J. Quantum Chem. 120 (2020) e26246, https://doi.org/10.1002/qua.26246
F. Ayedun, E.P. Inyang, E.A. Ibanga, K.M. Lawal, Analytical solutions to the Schrödinger equation with collective potential models: Application to quantum information theory, East Eur. J. Phys. 4 (2022) 87, https://doi.org/10.26565/2312-4334-2022-4-07
M. Heddar, M. Moumni, M. Falek, Non-Relativistic and Relativistic Equations for the Kratzer Potential plus a Dipole in 2D Systems, Phys. Scr. 94 (2019) 125011, https://doi.10.1088/1402-4896/ab3501
S.M. Ikhdair, An approximate k state solutions of the Dirac equation for the generalized Morse potential under spin and pseudospin symmetry, J. Math. Phys. 52 (2011) 052303, https://doi.org/10.1063/1.3583553
G. Van Hooydonk, Ionic Kratzer bond theory and vibrational levels for achiral covalent bond HH, Z. Naturforsch. A 64 (2009) 801
C. Berkdemir, A. Berkdemir, J. Han, Bound state solutions of the Schrödinger equation for modified Kratzer’s molecular potential, Chem. Phys. Lett. 417 (2006) 326, https://doi.org/10.1016/j.cplett.2005.10.039
K. Batra, V. Prasad, Spherical quantum dot in Kratzer confining potential: study of linear and nonlinear optical absorption coefficients and refractive index change, Eur. Phys. J. B 91 (2018) 298, https://doi.org/10.1140/epjb/e2018-90432-x
M. Sang, J. Shin, K. Kim, K.J. Yu, Electronic and Thermal Properties of Graphene and Recent Advances in Graphene Based Electronics Applications, Nanomaterials 9 (2019) 374, https://doi.org/10.3390/nano9030374
Y. Du, M. Wang, X. Ye, B. Liu, L. Han, S.H.M. Jafri, W. Liu, X. Zheng, Y. Ning, H. Li, Advances in the Field of Graphene-Based Composites for Energy-Storage Applications, Crystals 13 (2023) 912, https://doi.org/10.3390/cryst13060912
S.S. Bagade, S. Patel, M.M. Malik, P.K. Patel, Recent Advancements in Applications of Graphene to Attain Next-Level Solar Cells, C 9 (2023) 70, https://doi.org/10.3390/c9030070
S. Dwivedi, Graphene based electrodes for hydrogen fuel cells: A comprehensive review, Int. J. Hydrogen Energy 47 (2022) 41848, https://doi.org/10.1016/j.ijhydene.2022.02.051
F. Xia et al., Black phosphorus and its isoelectronic materials, Nat. Rev. Phys. 1 (2019) 306, https://doi.org/10.1038/s42254-019-0043-5
Z. Wu et al., Large-scale growth of few-layer two-dimensional black phosphorus, Nat. Mater. 20 (2021) 1203, https://doi.org/10.1038/s41563-021-01001-7
S. Manzeli et al., 2D transition metal dichalcogenides, Nat. Rev. Mater. 2 (2017) 17033, https://doi.org/10.1038/natrevmats.2017.33
M. Baazouzi, M. Moumni, M. Falek, Exact solutions for a quantum ring with a dipolar impurity, Eur. Phys. J. Plus 135 (2020) 894, https://doi.org/10.1140/epjp/s13360-020-00922-7
M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions (Dover Publ., New York, 1972)
https://dlmf.nist.gov/28.6 (2018-12-15)
N.R. Jazar, Mathieu equation, in Approximation Methods in Science and Engineering, (Springer, New York, NY, 2020)
D. Frenkel and R. Portugal, Algebraic methods to compute Mathieu functions, J. Phys. A 34 (2001) 3541, https://doi.org/10.1088/0305-4470/34/17/302
M. Gadella, J. Negro, L.M. Nieto, G.P. Pronko, Two Charged Particles in the Plane Under a Constant Perpendicular Magnetic Field, Int. J. Theor. Phys. 50 (2011) 2019, https://doi.org/10.1007/s10773-010-0539-3
D. Zwillinger and V. Moll, editors, Table of Integrals, Series, and Products, 8th ed., originally by I.S. Gradshteyn and I.M. Ryzhik, (Academic Press 2014)
G. Casella and R. L. Berger, Statistical Inference, (Duxbury Press 2002)
J. J. Sakurai and J. S. Napolitano, Modern Quantum Mechanics, (Cambridge University Press 2017)
D. Chakraborty and P. W. Ayers, Statistical Complexity: Applications in Electronic Structure, (edited by K. D. Sen, Springer 2012)
M. M. Nieto and L. M. Simmons, Eigenstates, coherent states, and uncertainty products for the Morse oscillator, Phys. Rev. A 19 (1979) 438, https://doi.org/10.1103/PhysRevA.19.438
J. Sánchez-Ruiz and J. Dehesa, Entropic integrals of orthogonal hypergeometric polynomials with general supports, J. Comput. Appl. Math. 118 (2000) 311, https://doi.org/10.1016/S0377-0427(00)00296-X
J. S. Dehesa, R. J. Yáñez, A. I. Aptekarev, and V. Buyarov, Strong asymptotics of Laguerre polynomials and information entropies of two-dimensional harmonic oscillator and onedimensional Coulomb potentials, J. Math. Phys. 39 (1998) 3050, https://doi.org/10.1063/1.532238
P. Sánchez-Moreno, D. Manzano, and J. S. Dehesa, Direct ´ Spreading Measures of Laguerre Polynomials, J. Comput. App. Math. 235 (2011) 1129, https://doi.org/10.1016/j.cam.2010.07.022
I. P. Hamilton and R. A. Mosna, Fisher information and kinetic energy functionals: A dequantization approach, J. Comput. App. Math. 233 (2010) 1542, https://doi.org/10.1016/j.cam.2009.02.087
A. Ciccioli, G. Gigli, G. Meloni, E. Testani, The dissociation energy of the new diatomic molecules SiPb and GePb, J. Chem. Phys. 127 (2007) 054303, https://doi.org/10.1063/1.2752803
S. Kaur, C. G. Mahajan, Dissociation energy of diatomic molecules, Pramana. J. Phys. 50 (1998) 397, https://doi.org/10.1007/BF02847369
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ahmed Becir, M. Moumni

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
