MPD physics performance studies in Bi+Bi collisions at √sNN = 9.2 GeV
DOI:
https://doi.org/10.31349/RevMexFis.71.041201Keywords:
Heavy-ion collision experiments, Quark-Gluon matterAbstract
TheMulti-Purpose Detector (MPD) is one of the three experiments of the Nuclotron Ion Collider-fAcility (NICA) complex, which is currently under construction at the Joint Institute for Nuclear Research in Dubna. With collisions of heavy ions in the collider mode, the MPD will cover the energy range √sNN = 4 − 11 GeV to scan the high baryon-density region of the QCD phase diagram. With expected statistics of 50–100 million events collected during the first run, MPD will be able to study a number of observables, including measurements of light hadrons and (hyper)nuclei production, particle flow, correlations and fluctuations, have a first look at dielectron production, and modification of vector-meson properties in dense matter. In this paper, we present selected results of the physics feasibility studies for theMPD experiment in Bi+Bi collisions at √sNN = 9.2 GeV, the system considered as one of the first available at the NICA collider.
References
T. Ablyazimov et al., Challenges in QCD matter physics -The scientific programme of the Compressed Baryonic Matter ex2076 periment at FAIR, Eur. Phys. J. A 53 (2017) 60, https://doi.org/10.1140/epja/i2017-12248-y
J. Adams et al., Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102, https://doi.org/10.1016/j.nuclphysa.2005.03.085
X. Luo et al., A Study of the Properties of the QCD Phase Di2084 agram in High-Energy Nuclear Collisions, Particles 3 (2020) 278, https://doi.org/10.3390/particles3020022
S. Borsanyi et al., Full result for the QCD equation of state with 2+1 flavors, Phys. Lett. B 730 (2014) 99, https://doi.org/10.1016/j.physletb.2014.01.007
M. A. Stephanov, K. Rajagopal, and E. V. Shuryak, Signatures of the tricritical point in QCD, Phys. Rev. Lett. 81 (1998) 4816, https://doi.org/10.1103/PhysRevLett.81.4816
J. Chen et al., Properties of the QCD matter: review of se2093 lected results from the relativistic heavy ion collider beam en ergy scan (RHIC BES) program, Nucl. Sci. Tech. 35 (2024) 214, https://doi.org/10.1007/s41365-024-01591-2
M. Gazdzicki, Ion Program of NA61/Shine at the CERN SPS, J. Phys. G 36 (2009) 064039, https://doi.org/10.1088/0954-3899/36/6/064039
X. Luo et al., eds., Properties of QCD Matter at High Baryon Density (Springer, 2022), https://doi.org/10.1007/978-981-19-4441-3
V. Golovatyuk et al., Multi-Purpose Detector to study heavy ion collisions at the NICA collider, Nucl. Phys. A 982 (2019) 963, https://doi.org/10.1016/j.nuclphysa.2018.10.082
V. Abgaryan et al., Status and initial physics performance stud ies of the MPD experiment at NICA, Eur. Phys. J. A 58 (2022) 140, https://doi.org/10.1140/epja/s10050-022-00750-6
A. Averyanov et al., MPD Technical Design Reports, (2109). https://mpd.jinr.ru/doc/mpd-tdr
M. Bleicher et al., Relativistic hadron hadron collisions in the ultrarelativistic quantum molecular dynamics model, J. Phys. G 25 (1999) 1859, https://doi.org/10.1088/0954-3899/25/9/308
S. A. Bass et al., Microscopic models for ultrarelativistic heavy ion collisions, Prog. Part. Nucl. Phys. 41 (1998) 255, https://doi.org/10.1016/S0146-6410(98)00058-1
M. Baznat et al., Monte-Carlo Generator of Heavy Ion Collisions DCM-SMM, Phys. Part. Nucl. Lett. 17 (2020) 303, https://doi.org/10.1134/S1547477120030024
J. Aichelin et al., Parton-hadron-quantum-molecular dynamics: A novel microscopic n -body transport approach for heavy ion collisions, dynamical cluster formation, and hypernuclei production, Phys. Rev. C 101 (2020) 044905, https://doi.org/10.1103/PhysRevC.101.044905
W. Cassing and E. L. Bratkovskaya, Parton transport and hadronization from the dynamical quasiparticle point of view, Phys. Rev. C 78 (2008) 034919, https://doi.org/10.1103/PhysRevC.78.034919
W. Cassing and E. L. Bratkovskaya, Parton-Hadron-String Dynamics: an off-shell transport approach for relativistic energies, Nucl. Phys. A 831 (2009) 215, https://doi.org/10.1016/j.nuclphysa.2009.09.007
I. Karpenko, P. Huovinen, and M. Bleicher, A 3+1 dimensional viscous hydrodynamic code for relativistic heavy ion collisions, Comput. Phys. Commun. 185 (2014) 3016, https://doi.org/10.1016/j.cpc.2014.07.010
I. A. Karpenko et al., Estimation of the shear viscosity at finite net-baryon density from A + A collision data at √ sNN = 7.7 − 200 GeV, Phys. Rev. C 91 (2015) 064901, https://doi.org/10.1103/PhysRevC.91.064901
CERN-GEANT, Detector Description and Simulation Tool, https://geant4.cern.ch
Simulation and Analysis Framework for the MPD experiment of the NICA project, https://mpdroot.jinr.ru/
A. Baginyan et al., Current Status of the MICC: an Overview, In 9th International Conference on Distributed Computing and Grid Technologies in Science and Education (2021) pp. 1-8
N. Kutovskiy et al., Integration of Distributed Heterogeneous Computing Resources for the MPD Experiment with DIRAC Interware, Phys. Part. Nucl. 52 (2021) 835, https://doi.org/10.1134/S1063779621040419
A. Moshkin et al., Approaches, services, and monitoring in a distributed heterogeneous computing environment for theMPD experiment, Russian Supercomputing Days 2021 (2021) 4, https://doi.org/10.29003/m2454.RussianSCDays2021
A. Chatterjee et al., Effect of centrality selection on higher order cumulants of net-proton multiplicity distributions in relativistic heavy-ion collisions, Phys. Rev. C 101 (2020) 034902, https://doi.org/10.1103/PhysRevC.101.034902
X. Luo et al., Volume fluctuation and auto-correlation effects in the moment analysis of net-proton multiplicity distributions in heavy-ion collisions, J. Phys. G 40 (2013) 105104, https://doi.org/10.1088/0954-3899/40/10/105104
C. Loizides, J. Nagle, and P. Steinberg, Improved version of the PHOBOS Glauber Monte Carlo, SoftwareX 1- 2 (2015) 13, https://doi.org/10.1016/j.softx.2015.05.001
P. Parfenov et al., Anisotropic Flow Measurements of Identified Hadrons with MPD Detector at NICA, Particles 4 (2021) 146, https://doi.org/10.3390/particles4020014
P. Parfenov et al., Performance for Directed Flow Measurements of the MPD Experiment at NICA Collider, Phys. Part. Nucl. 52 (2021) 618, https://doi.org/10.1134/S106377962104047X
V. B. Luong et al., Elliptic Flow and Its Fluctuations from TransportModels for Au+Au Collisions at = 7.7 and 11.5 GeV, Particles 6 (2022) 17, https://doi.org/10.3390/particles6010002
A. M. Poskanzer and S. A. Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions, Phys. Rev. C 58 (1998) 1671, https://doi.org/10.1103/PhysRevC.58.1671
E. Nazarova et al., Performance study of the hyperon global polarization measurements with MPD at NICA, Eur. Phys. J. A 60 (2024) 85, https://doi.org/10.1140/epja/s10050-024-01308-4
E. Schnedermann, J. Sollfrank, and U.W. Heinz, Thermal phenomenology of hadrons from 200-A GeV S+S collisions, Phys. Rev. C 48 (1993) 2462, https://doi.org/10.1103/PhysRevC.48.2462
J. Rafelski and B. Muller, Strangeness Production in the Quark - Gluon Plasma, Phys. Rev. Lett. 48 (1982) 1066, https://doi.org/10.1103/PhysRevLett.48.1066
C. Alt et al., Pion and kaon production in central Pb + Pb collisions at 20-A and 30-A-GeV: Evidence for the onset of de confinement, Phys. Rev. C 77 (2008) 024903, https://doi.org/10.1103/PhysRevC.77.024903
F. Antinori et al., Enhancement of strange and multi-strange baryons and anti-baryons in SW interactions at 200-GeV/c, Phys. Lett. B 447 (1999) 178, https://doi.org/10.1016/S0370-2693(98)01561-5
G. Agakishiev et al., Strangeness Enhancement in Cu+Cu and Au+Au Collisions at snn = 200 GeV, Phys. Rev. Lett. 108 (2012) 072301, https://doi.org/10.1103/PhysRevLett.108.072301
B. B. Abelev et al., Multi-strange baryon production at midrapidity in Pb-Pb collisions at snn = 2.76 TeV, Phys. Lett. B 728 (2014) 216, https://doi.org/10.1016/j.physletb.2014.05.052
C. Greiner and S. Leupold, Anti-hyperon production in relativistic heavy ion collision, J. Phys. G 27 (2001) L95, https://doi.org/10.1088/0954-3899/27/9/102
A. Palmese et al., Chiral symmetry restoration in heavy-ion collisions at intermediate energies, Phys. Rev. C 94 (2016) 044912, https://doi.org/10.1103/PhysRevC.94.044912
J. Cleymans, K. Redlich, and E. Suhonen, Canonical description of strangeness conservation and particle production, Z. Phys. C 51 (1991) 137, https://doi.org/10.1007/BF01579571
F. Becattini and J. Manninen, Centrality dependence of strangeness production in heavy-ion collisions as a geometrical effect of core-corona superposition, Phys. Lett. B 673 (2009) 19, https://doi.org/10.1016/j. physletb.2009.01.066
M. Ilieva et al., Reconstruction of multistrange hyperons with the MPD detector at the NICA collider: a Monte Carlo feasibility study, Phys. Part. Nucl. Lett. 12 (2015) 618, https://doi.org/10.1134/S1547477115040160
J. Adams et al., K(892)* resonance production in Au+Au and p+p collisions at s(NN)**(1/2) = 200 GeV at STAR, Phys. Rev. C 71 (2005) 064902, https://doi.org/10.1103/PhysRevC.71.064902
M. M. Aggarwal et al., K*0 production in Cu+Cu and Au+Au 2221 collisions at snn = 62.4 GeV and 200 GeV, Phys. Rev. C 84 (2011) 034909, https://doi.org/10.1103/PhysRevC.84.034909
B. I. Abelev et al., Hadronic resonance production in collisions at GeV measured at the BNL Relativistic Heavy Ion Collider, Phys. Rev. C 78 (2008) 044906, https://doi.org/10.1103/PhysRevC.78.044906
E. T. Yamamoto, Mid-rapidity ϕ production in Au+Au collisions at √ sNN = 130 GeV., AIP Conf. Proc. 610 (2002) 532, https://doi.org/10.1063/1.1469985
J. Adams et al., phi meson production in Au + Au and p+p collisions at snn = 200-GeV, Phys. Lett. B 612 (2005) 181, https://doi.org/10.1016/j. physletb.2004.12.082
B. I. Abelev et al., Strange baryon resonance production in √ sNN = 200 GeV p+p and Au+Au collisions, Phys. Rev. Lett. 97 (2006) 132301, https://doi.org/10.1103/PhysRevLett.97.132301
B. I. Abelev et al., Spin alignment measurements of the K*0(892) and phi (1020) vector mesons in heavy ion collisions at √ sNN = 200 GeV, Phys. Rev. C 77 (2008) 061902, https://doi.org/10.1103/PhysRevC.77.061902
B. B. Abelev et al., K*(892)0 and φ(1020) production in PbPb collisions at √ sNN = 2.76 TeV, Phys. Rev. C 91 (2015) 024609, https://doi.org/10.1103/PhysRevC.91.024609
J. Adam et al., Production of K* (892)0 and φ(1020) in p-Pb collisions at √ sNN = 5.02 TeV, Eur. Phys. J. C 76 (2016) 245, https://doi.org/10.1140/epjc/s10052-016-4088-7
J. Adam et al., K*(892)0 and φ(1020) meson production at high transverse momentum in pp and Pb-Pb collisions at √ sNN = 2.76 TeV, Phys. Rev. C 95 (2017) 064606, https://doi.org/10.1103/PhysRevC.95.064606
D. Adamova et al., Production of P(1385)± and Ξ(1530)0 in p-Pb collisions at √ sNN = 5.02 TeV, Eur. Phys. J. C 77 (2017) 389, https://doi.org/10.1140/epjc/s10052-017-4943-1
S. Acharya et al., Measurement of Λ(1520) production in pp collisions at √ s = 7 TeV and p-Pb collisions at √ sNN =5.02 TeV, Eur. Phys. J. C 80 (2020) 160, https://doi.org/10.1140/epjc/s10052-020-7687-2
S. Acharya et al., Suppression of Λ(1520) resonance production in central Pb-Pb collisions at √ sNN = 2.76 TeV, Phys. Rev. C 99 (2019) 024905, https://doi.org/10.1103/PhysRevC.99.024905
S. Acharya et al., Production of the ρ(770)0 meson in pp and Pb-Pb collisions at √ sNN = 2.76 TeV, Phys. Rev. C 99 (2019) 064901, https://doi.org/10.1103/PhysRevC.99.064901
S. Acharya et al., Evidence of Spin-Orbital Angular Momentum Interactions in Relativistic Heavy-Ion Collisions, Phys. Rev. Lett. 125 (2020) 012301, https://doi.org/10.1103/PhysRevLett.125.012301
V. G. Riabov, Overview of ALICE results on light flavour hadron production, J. Phys. Conf. Ser. 1390 (2019) 012026, https://doi.org/10.1088/1742-6596/1390/1/012026
S. Acharya et al., Evidence of rescattering effect in Pb-Pb collisions at the LHC through production of K*(892)0 and φ(1020) mesons, Phys. Lett. B 802 (2020) 135225, https://doi.org/10.1016/j.physletb.2020.135225
A. Adare et al., Transverse energy production and charged particle multiplicity at midrapidity in various systems from √ sNN = 7.7 to 200 GeV, Phys. Rev. C 93 (2016) 024901, https://doi.org/10.1103/PhysRevC.93.024901
V. Riabov, Hadronic resonances in heavy-ion collisions at NICA energies and their reconstruction in the MPD setup, Int. J. Mod. Phys. A 37 (2022) 2244003, https://doi.org/10.1142/S0217751X22440031
D. Ivanishchev, et al., Study of Production Features, Mod2285 eling and Optimization of Algorithms for Reconstruction of Short-Lived Hadron Resonances in the MPD Experimental Setup at the NICA Collider, Phys. Part. Nucl. 52 (2021) 703, https://doi.org/10.1134/S1063779621040286
D. A. Ivanishchev et al., Properties of ρ(770)0, K*(892), φ(1020), P (1385), Λ(1520) and Ξ(1530)0 resonances in heavyion collisions at a center of mass energy of and their re2292 construction using the MPD detector at NICA, J. Phys. Conf. Ser. 2103 (2021) 012140, https://doi.org/10.1088/1742-6596/2103/1/012140
P. A. Zyla et al., Review of Particle Physics, PTEP 2020 (2020) 083C01, https://doi.org/10.1093/ptep/ptaa104
S. Zhang et al., Searching for onset deconfinement via hypernuclei baryon-strangeness correlations, Phys. Lett. B 684 (2010) 224, https://doi.org/10.1016/j.physletb.2010.01.034
J. Lattimer and M. Prakash, The physics of neutron stars, Science 304 (2004) 536, https://doi.org/10.1126/science.1090720
J. Steinheimer et al., Hypernuclei, dibaryon and antinuclei production in high energy heavy ion collisions: Thermal production vs. coalescence. Phys. Lett. B 714 (2012) 85, https://doi.org/10.1016/j.physletb.2012.06.069
L. Adamczyk et al., Global Λ hyperon polarization in nuclear collisions: evidence for the most vortical fluid, Nature 548 (2017) 62, https://doi.org/10.1038/nature23004
M. I. Abdulhamid et al., Global polarization of Λ and Λ − hyperons in Au+Au collisions at √ sNN =19.6 and 27 GeV, Phys. Rev. C 108 (2023) 014910, https://doi.org/10.1103/PhysRevC.108.014910
R. Abou Yassine et al., Measurement of global polarization of Λ hyperons in few-GeV heavy-ion collisions, Phys. Lett. B 835 (2022) 137506, https://doi.org/10.1016/j.physletb.2022.137506
A. Ayala et al., Core meets corona: A two-component source to explain Λ and Λ − 2317 global polarization in semi-central heavy-ion collisions, Phys. Lett. B 810 (2020) 135818, https://doi.org/10.1016/j.physletb.2020.135818
A. Ayal et al., Rise and fall of Λ and Λ − global polarization in semi-central heavy-ion collisions at HADES, NICA and RHIC energies from the core-corona model, Phys. Rev. C 105 (2022) 034907, https://doi.org/10.1103/PhysRevC.105.034907
X.-Y. Wu et al., Local and global polarization of Λ hyperons 2325 across RHIC-BES energies: The roles of spin hall effect, initial condition, and baryon diffusion, Phys. Rev. C 105 (2022) 064909, https://doi.org/10.1103/PhysRevC.105.064909
J.-H. Gao, Global Polarization Theory Overview, EPJ Web Conf. 259 (2022) 02003, https://doi.org/10.1051/epjconf/202225902003
N. S. Tsegelnik, E. E. Kolomeitsev, and V. Voronyuk, Helicity and vorticity in heavy-ion collisions at energies available at the JINR Nuclotron-based Ion Collider facility, Phys. Rev. C 107 (2023) 034906, https://doi.org/10.1103/PhysRevC.107.034906
N. Tsegelnik, E. Kolomeitsev, and V. Voronyuk, Λ and FreezeOut Distributions and Global Polarizations in Au+Au Collisions, Particles 6 (2023) 373, https://doi.org/10.3390/particles6010019
M. S. Abdallah et al., Global Λ-hyperon polarization in Au+Au collisions at √ sNN =3 GeV, Phys. Rev. C 104 (2021) L06, https://doi.org/10.1103/PhysRevC.104.L061901
S. A. Voloshin, A. M. Poskanzer, and R. Snellings, Collective phenomena in non-central nuclear collisions, LandoltBornstein 23 (2010) 293, https://doi.org/10.1007/978-3-642-01539-7_10
A. Taranenko, Anisotropic flow measurements from RHIC 2347 to SIS, EPJ Web Conf. 204 (2019) 03009, https://doi.org/10.1051/epjconf/201920403009
A. Sorensen et al., Dense nuclear matter equation of state from heavy-ion collisions, Prog. Part. Nucl. Phys. 134 (2024) 104080, https://doi.org/10.1016/j.ppnp.2023.104080
A. Demanov, P. Parfenov, and A. Taranenko, Elliptic Flow Fluctuations at NICA Energy Range, Phys. Part. Nucl. 55 (2024) 1124, https://doi.org/10.1134/S1063779624700825
J. Auvinen and H. Petersen, Evolution of elliptic and triangular flow as a function of √ sNN in a hybrid model, Phys. Rev. C 88 (2013) 064908, https://doi.org/10.1103/PhysRevC.88.064908
S. Pratt, Pion Interferometry of Quark-Gluon Plasma, Phys. Rev. D 33 (1986) 1314, https://doi.org/10.1103/PhysRevD.33.1314
G. Bertsch, M. Gong, and M. Tohyama, Pion Interferometry in Ultrarelativistic Heavy Ion Collisions, Phys. Rev. C 37 (1988) 1896, https://doi.org/10.1103/PhysRevC.37.1896
P. Batyuk et al., Correlation femtoscopy study at energies available at the JINR Nuclotron-based Ion Collider fAcility and the BNL Relativistic Heavy Ion Collider within a viscous hydrodynamic plus cascade model, Phys. Rev. C 96 (2017) 024911, https://doi.org/10.1103/PhysRevC.96.024911
G. I. Kopylov, The kinematics of inclusive experiments with unstable particles, Phys. Lett. B 41 (1972) 371, https://doi.org/10.1016/0370-2693(72)90598-9
G. I. Kopylov and M. I. Podgoretsky, Correlations of identical particles emitted by highly excited nuclei, Sov. J. Nucl. Phys. 15 (1972) 219
S. Acharya et al., Femtoscopic correlations of identical charged pions and kaons in pp collisions at s = 13 TeV with eventshape selection, Phys. Rev. C 109 (2024) 024915, https://doi.org/10.1103/PhysRevC.109.024915
A. Tumasyan et al., Two-particle Bose-Einstein correlations and their Levy parameters in PbPb collisions at ´ sNN = 5.02 TeV, Phys. Rev. C 109 (2024) 024914, https://doi.org/10.1103/PhysRevC.109.024914
V. A. Schegelsky, Levy Analysis of Bose-Einstein Correlation in pp Collisions at √ s = 7 TeV Measured with the AT2384 LAS, Phys. Part. Nucl. Lett. 16 (2019) 503, https://doi.org/10.1134/S1547477119050261
M. Csanád and D. Kincses, Femtoscopy with Lévy sources from SPS through RHIC to LHC (2024), https://doi.org/10.3390/universe10020054
A. Ayala et al., Collision energy dependence of source sizes for primary and secondary pions at energies available at the JINR nuclotron-based ion collider facility from Lévy fits, Eur. Phys. J. A 60 (2024) 135, https://doi.org/10.1140/epja/s10050-024-01350-2
M. G. Bowler, Coulomb corrections to Bose-Einstein correlations have been greatly exaggerated, Phys. Lett. B 270 (1991) 69, https://doi.org/10.1016/0370-2693(91)91541-3
Y. Sinyukov et al., Coulomb corrections for interferometry analysis of expanding hadron systems, Phys. Lett. B 432 (1998) 248, https://doi.org/10.1016/S0370-2693(98)00653-4
S. Acharya et al., Towards the understanding of the genuine three-body interaction for p-p-p and p-p-Λ, Eur. Phys. J. A 59 (2023) 145, https://doi.org/10.1140/epja/s10050-023-00998-6
M. Cheremnova et al., Particle Multiplicity Fluctuations and Spatiotemporal Properties of Particle-Emitting Source of Strongly Interacting Matter for NICA and RHIC Energies, Symmetry 14 (2022) 1316, https://doi.org/10.3390/sym14071316
S. Acharya et al., Investigation of K+k − interactions via femtoscopy in Pb-Pb collisions at sNN = 2.76 TeV at the CERN Large Hadron Collider, Phys. Rev. C 107 (2023) 054904, https://doi.org/10.1103/PhysRevC.107.054904
S. V. Akkelin and Y. M. Sinyukov, The HBT interferometry of expanding sources, Phys. Lett. B 356 (1995) 525, https://doi.org/10.1016/0370-2693(95)00765-D
J. Adams et al., Pion interferometry in Au+Au collisions at S(NN)**(1/2) = 200-GeV, Phys. Rev. C 71 (2005) 044906, https://doi.org/10.1103/PhysRevC.71.044906
S. A. Bass, P. Danielewicz, and S. Pratt, Clocking hadronization in relativistic heavy ion collisions with balance functions, Phys. Rev. Lett. 85 (2000) 2689, https://doi.org/10.1103/PhysRevLett.85.2689
S. Pratt and C. Plumberg, Charge balance functions for heavyion collisions at energies available at the CERN Large Hadron Collider, Phys. Rev. C 104 (2021) 014906, https://doi.org/10.1103/PhysRevC.104.014906
C. Alt et al., System size and centrality dependence of the balance function in A + A collisions at s(NN)**(1/2) = 17.2-GeV, Phys. Rev. C 71 (2005) 034903, https://doi.org/10.1103/PhysRevC.71.034903
M. M. Aggarwal et al., Balance Functions from Au+Au, d+Au, and p + p Collisions at √ sNN = 200 GeV, Phys. Rev. C 82 (2010) 024905, https://doi.org/10.1103/PhysRevC.82.024905
L. Adamczyk et al., Beam-energy dependence of charge balance functions from Au + Au collisions at energies available at the BNL Relativistic Heavy Ion Collider, Phys. Rev. C 94 (2016) 024909, https://doi.org/10.1103/PhysRevC.94.024909
B. Abelev et al., Charge correlations using the balance function in Pb-Pb collisions at √ sNN = 2.76 TeV, Phys. Lett. B 723 (2013) 267, https://doi.org/10.1016/j.physletb.2013.05.039
S. Acharya et al., Two particle differential transverse momentum and number density correlations in p-Pb and Pb-Pb at the LHC, Phys. Rev. C 100 (2019) 044903, https://doi.org/10.1103/PhysRevC.100.044903
J. Pan, Balance functions of (un)identified hadrons in Pb-Pb, p-Pb, and pp collisions at the LHC, Nucl. Phys. A 982 (2019) 315, https://doi.org/10.1016/j.nuclphysa.2018.09.022
D. Blau and D. Peresunko, Direct Photon Production in Heavy-Ion Collisions: Theory and Experiment, Particles 6 (2023) 173, https://doi.org/10./particles6010009
E. Kryshen et al., Thermal Photon and Neutral Meson Mea2450 surements Using the Photon Conversion Method in the MPD Experiment at the NICA Collider, Phys. Part. Nucl. 52 (2021) 669, https://doi.org/10.1134/S1063779621040390
G. Dellacasa et al., ALICE technical design report of the photon spectrometer (PHOS) (1999)
A. Y. Semenov et al., Electromagnetic Calorimeter for MPD Spectrometer at NICA Collider, JINST 15 (2020) C05017, https://doi.org/10.1088/1748-0221/15/05/C05017
V. V. Begun andM. I. Gorenstein, Bose-Einstein condensation of pions in high multiplicity events, Phys. Lett. B 653 (2007) 190, https://doi.org/10.1016/j.physletb.2007.07.059
M. A. Stephanov, Thermal fluctuations in the interacting pion gas, Phys. Rev. D 65 (2002) 096008, https://doi.org/10.1103/PhysRevD.65.096008
N. M. Kroll and W. Wada, Internal pair production associated with the emission of high-energy gamma rays, Phys. Rev. 98 (1955) 1355, https://doi.org/10.1103/PhysRev.98.1355
B. V. Jacak, High-energy heavy ion collisions: The Physics of superdense matter, In 30th International Conference on HighEnergy Physics (2000) pp. 261-271
S. Acharya et al., The ALICE experiment: a journey through QCD, Eur. Phys. J. C 84 (2024) 813, https://doi.org/10.1140/epjc/s10052-024-12935-y
Y. Akiba et al., The Hot QCD White Paper: Exploring the Phases of QCD at RHIC and the LHC (2015).
New State of Matter created at CERN. Un nouvel état de la matiére (2000), https://cds.cern.ch/record/716634
D. Kincses, M. Stefaniak, and M. Csanád, Event-by-Event Investigation of the Two-Particle Source Function in HeavyIon Collisions with EPOS, Entropy 24 (2022) 308, https://doi.org/10.3390/e24030308
A. Maevskiy et al., Simulating the time projection chamber responses at the MPD detector using generative adversarial networks, Eur. Phys. J. C 81 (2021) 599, https://doi.org/10.1140/epjc/s10052-021-09366-4
T. Csorgo et al., Bose-Einstein or HBT correlations and the anomalous dimension of QCD, Acta Phys. Polon. B 36 (2005) 329
T. Csorgo, Correlation Probes of a QCD Critical Point, PoS HIGH-PTLHC 08 (2008) 027, https://doi.org/10.22323/1.076.0027
T. Csorgo et al., Bose-Einstein or HBT correlation signature of a second order QCD phase transition, AIP Conf. Proc. 828 (2006) 525, https://doi.org/10.1063/1.2197465
S. Pratt et al., Testing transport theories with correlation measurements, Nucl. Phys. A 566 (1994) 103C, https://doi.org/10.1016/0375-9474(94)90614-9
N. Ermakov and G. Nigmatkulov, Modeling of two-particle femtoscopic correlations at top RHIC energy, J. Phys. Conf. Ser. 798 (2017) 012055, https://doi.org/10.1088/1742-6596/798/1/012055
Q. Li, G. Graef, and M. Bleicher, UrQMD calculations of two-pion HBT correlations in p+p and Pb+Pb collisions at LHC energies, J. Phys. Conf. Ser. 420 (2013) 012039, https://doi.org/10.1088/1742-6596/420/1/012039
W. A. Zajc et al., Two-pion correlations in heavy ion colli2506 sions, Phys. Rev. C 29 (1984) 2173, https://doi.org/10.1103/PhysRevC.29.2173
U. A. Wiedemann and U. W. Heinz, Particle interferometry for relativistic heavy ion collisions, Phys. Rept. 319 (1999) 145, https://doi.org/10.1016/S0370-1573(99)00032-0
H. Adhikary et al., Two-pion femtoscopic correlations in Be+Be collisions at √ sNN = 16.84 GeV measured by the NA61/SHINE at CERN, Eur. Phys. J. C 83 (2023) 919, https://doi.org/10.1140/epjc/s10052-023-11997-8
M. Bystersky, Non-Gaussian effects in identical pion correlation function at STAR, AIP Conf. Proc. 828 (2006) 533, https://doi.org/10.1063/1.2197466
T. Csorgo, S. Hegyi, and W. A. Zajc, Bose-Einstein correlations for Levy stable source distributions, Eur. Phys. J. C 36 (2004) 67, https://doi.org/10.1140/epjc/s2004-01870-9
J. Cimermaň, C. Plumberg, and B. Tomášik, The Shape of the Correlation Function, Phys. Part. Nucl. 51 (2020) 282
M. Y. Bogolyubsky et al., Characteristics of the groups of charged particles in anti-p p, p p and K-p interactions at 32- GeV/c, Phys. Atom. Nucl. 58 (1995) 1877
M. Y. Bogolyubsky et al., Clan model and factorial moments of the multiplicity distribution in intervals, Phys. Atom. Nucl. 57 (1994) 2132
K. U. Abraamyan et al., The MPD detector at the NICA heavy-ion collider at JINR, Nucl. Instrum. Meth. A 628 (2011) 99, https://doi.org/10.1016/j.nima.2010.06.293
I. P. Lokhtin et al., Heavy ion event generator HYDJET++ (HYDrodynamics plus JETs), Comput. Phys. Commun. 180 (2009) 779, https://doi.org/10.1016/j.cpc.2008.11.015
A. Giovannini and L. Van Hove, Negative Binomial Properties and Clan Structure in Multiplicity Distributions, Acta Phys. Polon. B 19 (1988) 495
P. Sarma and B. Bhattacharjee, Color reconnection as a possible mechanism of intermittency in the emission spectra of charged particles in PYTHIA-generated high-multiplicity pp collisions at energies available at the CERN Large Hadron Collider, Phys. Rev. C 99 (2019) 034901, https://doi.org/10.1103/PhysRevC.99.034901
R. Sharma and R. Gupta, Scaling Properties of Multiplicity Fluctuations in the AMPT Model, Adv. High Energy Phys. 2018 (2018) 6283801, https://doi.org/10.1155/2018/6283801
O. Kodolova et al., Factorial Moments in the NICA/MPD Experiment, Phys. Part. Nucl. 52 (2021) 658, https://doi.org/10.1134/S106377962104033X
T. Anticic et al., Critical fluctuations of the proton density in A+A collisions at 158 A GeV, Eur. Phys. J. C 75 (2015) 587, https://doi.org/10.1140/epjc/s10052-015-3738-5
N. Davis, Searching for the Critical Point of Strongly Interacting Matter in Nucleus-Nucleus Collisions at CERN SPS, Acta Phys. Polon. Supp. 13 (2020) 637, https://doi.org/10.5506/APhysPolBSupp.13.637
M. Mohisin Khan et al., Improved intermittency analysis of charged particle density fluctuations in Pb+Pb collisions at √ sNN = 2.76 TeV, DAE Symp. Nucl. Phys. 61 (2016) 840
N. G. Antoniou, N. N. Davis, and F. K. Diakonos, Improved intermittency analysis of proton density fluctuations in NA49 ion collisions at 158 AGeV, EPJ Web Conf. 71 (2014) 00035, https://doi.org/10.1051/epjconf/20147100035
A. Bialas and R. B. Peschanski, Moments of Rapidity Distributions as a Measure of Short Range Fluctuations in HighEnergy Collisions, Nucl. Phys. B 273 (1986) 703, https://doi.org/10.1016/0550-3213(86)90386-X
M. Hippert and E. S. Fraga, Multiplicity fluctuations near the QCD critical point, Phys. Rev. D 96 (2017) 034011, https://doi.org/10.1103/PhysRevD.96.034011
A. Adare et al., Lévy-stable two-pion Bose-Einstein correlations in √ sNN = 200 GeV Au+Au collisions, Phys. Rev. C 97 (2018) 064911, https://doi.org/10.1103/PhysRevC.97.064911
M. Csanad, Exploring the QCD phase diagram via the collision energy dependence of multi-particle femtoscopy with PHENIX, J. Phys. Conf. Ser. 1602 (2020) 012009, https://doi.org/10.1088/1742-6596/1602/1/012009
A. Bzdak et al., Mapping the Phases of Quantum Chromodynamics with Beam Energy Scan, Phys. Rept. 853 (2020) 1, https://doi.org/10.1016/j.physrep.2020.01.005
M. Nagy et al., A novel method for calculating Bose-Einstein correlation functions with Coulomb final-state interaction, Eur. Phys. J. C 83 (2023) 1015, https://doi.org/10.1140/epjc/s10052-023-12161-y
T. Csorgo, B. Lorstad, and J. Zimanyi, Bose-Einstein correlations for systems with large halo, Z. Phys. C 71 (1996) 491, https://doi.org/10.1007/s002880050195
B. Porfy, Femtoscopic Correlation Measurement with Sym2589 metric Lévy-Type Source at NA61/SHINE, Universe 9 (2023) 298, https://doi.org/10.3390/universe9070298
D. Kincses, PHENIX results on Lévy analysis of Bose-Einstein correlation functions, Acta Phys. Polon. Supp. 10 (2017) 627, https://doi.org/10.5506/APhysPolBSupp.10.627
D. Kincses, Lévy analysis of HBT correlation functions in √ sNN = 62 GeV and 39 GeV Au+Au collisions at PHENIX, Universe 4 (2018) 11, https://doi.org/10.3390/universe4010011
S. Lökös, Lévy-stable two-pion Bose-Einstein correlation functions measured with PHENIX in √ sNN = 200 GeV Au+Au collisions, In 13th Workshop on Particle Correlations and Femtoscopy (2018)
A. Mukherjee, Kaon femtoscopy with Lévy-stable sources from √ sNN = 200 GeV Au + Au collisions at RHIC, Universe 9 (2023) 300, https://doi.org/10.3390/universe9070300
U. A. Wiedemann and U. W. Heinz, Resonance contributions to HBT correlation radii, Phys. Rev. C 56 (1997) 3265, https://doi.org/10.1103/PhysRevC.56.3265
J. Bolz et al., Resonance decays and partial coherence in Bose-Einstein correlations, Phys. Rev. D 47 (1993) 3860, https://doi.org/10.1103/PhysRevD.47.3860
T. Csorgo, Particle interferometry from 40-MeV to 40-TeV, Acta Phys. Hung. A 15 (2002) 1, https://doi.org/10.1556/APH.15.2002.1-2.1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 R. Abdulin, V. Abgaryan, R. Adhikary, K. G. Afanaciev, S. Afanaciev, G. Agakishiev, E. I. Alexandrov, I. N. Alexandrov, M. Alvarez-Ramírez, D. Andreev, S. V. Andreeva, T. V. Andreeva, E. V. Andronov, N. V. Anfimov, A. Anikeev, A. V. Anufriev, A. A. Aparin, R. Arteche Díaz, V. I. Astaxov, T. Aushev, S. P. Avdeev, S. G. Averichev, A. V. Averyanov, A. Ayala, V. N. Azorskij, L. Babichev, V. A. Babkin, P. Bakhtin, A. I. Balandin, N. A. Balashov, A. Baranov, D. A. Baranov, N. V. Baranova, R. V. Baratov, N. Barbashina, V. Barbasová, V. M. Baryshnikov, K. D. Basharina, A. E. Baskakov, V. G. Bayev, A. G. Bazhazhin, S. N. Bazylev, P. Beletsky, S. V. Belokurova, A. V. Belyaev, E. V. Belyaeva, D. V. Belyakov, Y. Berdnikov, F. Berezov, M. Bhattacharjee, W. Bietenholz, D. Blau, G. A. Bogdanova, D. N. Bogoslovsky, I. V. Boguslavski, E. A. Bondar, E. E. Boos, A. Botvina, A. Brandin, S. A. Bulychjov, V. Burdelnaya, N. Burmasov, M. G. Buryakov, J. Busa Jr., A. V. Butenko, S. G. Buzin, A. V. Bychkov, Z. Cao, C. Ceballos Sánсhez, V. V. Chalyshev, V. F. Chepurnov, VI. V. Chepurnov, G. A. Cheremukhina, A. S. Chernyshov, E. Cuautle, A.E. Demanov, D. V. Dementiev, D. Derkach, A. V. Dmitriev, E. V. Dolbilina, V. H. Dodokhov, A. G. Dolbilov, I. Domínguez, D. E. Donetz, V. I. Dronik, A. Yu. Dubrovin, P. O. Dulov, V. B. Dunin, A. Dyachenko, A. A. Efremov, D. S. Egorov, V. V. Elsha, N. E. Emelianov, J. Erkenova, G. H. Eyyubova, A. Ezhilov, D. Fang, O. V. Fateev, O. Fedin, A. I. Fedosimova, Yu. I. Fedotov, A. S. Fedotov, J. A. Fedotova, A. A. Fedunin, S. Feng, G. A. Feofilov, I. A. Filippov, G. Fomenko, M. A. Gaganova, K. A. Galaktionov, Ya. D. Galkin, A. S. Galoyan, Ch. Gao, P. E. García-González, O. P. Gavrishuk, N. S. Geraksiev, S. E. Gerasimov, K. V. Gertsenberger, N. Gevorgyan, Y. Ghoneim, O. Golosov, V. M. Golovatyuk, M. Golubeva, A. O. Golunov, I. Goncharov, N. V. Gorbunov, P. Gordeev, I. P. Gorelikov, H. Grigorian, P. N. Grigoriev, F. Guber, D. Guo, A. V. Guskov, D. Han, W. Han, W. He, L. A. Hernández-Rosas, M. Herrera, S. Hnatic, M. Hnatic, M. Huang, S. A. Ibraimova, D. M. Idrisov, T. K. Idrissova, Z. A. Igamkulov, S. N. Igolkin, A. Yu. Isupov, D. Ivanishchev, A. V. Ivanov, A. Ivashkin, J. Jiao, I. Jadochnikov, S. I. Kakurin, N. I. Kalinichenko, A. Kamkin, M. N. Kapishin, D. E. Karmanov, N. Karpushkin, I. A. Kashunin, Y. Kasumov, A. O. Kechechyan, G. D. Kekelidze, V. D. Kekelidze, A. Khanzadeev, P. I. Kharlamov, G. G. Khodzhibagiyan, A. S. Khvorostukhin, E. Kidanova, V. A. Kireyeu, Yu. T. Kiriushin, L. Kochenda, O. L. Kodolova, A. A. Kokorev, A. O. Kolesnikov, V. I. Kolesnikov, N. Kolomoyets, A. A. Kolozhvari, V. Kondtratiev, V. V. Korenkov, M. G. Korolev, V. L. Korotkikh, A. I. Kostylev, D. Kotov, V. N. Kovalenko, M. E. Kozhevnikova, I. Kozmin, V. A. Kramarenko, A. Kravčáková, P. Kravtsov, Yu. F. Krechetov, I. V. Kruglova, V. A. Krylov, A. V. Krylov, E. Kryshen, A. P. Kryukov, S. N. Kuklin, V. V. Kulikov, A. A. Kulikovskaya, A. V. Kunts, E. Kurbatov, A. Kurepin, V. Kuskov, V. A. Kuzmin, A. Kyrianova, D. E. Lanskoy, N. A. Lashmanov, R. Lednicky, V. V. Leontev, I. A. Lebedev, L. Li, P. Li, S. Li, T.Z. Ligdenova, A. V. Litomin, E. I. Litvinenko, D. Liu, V. I. Lobanov, Yu. Yu. Lobanov, S. P. Lobastov, I. P. Lokhtin, J. R. Lukstins, D. Larionova, A. Lobanov, P. Lu, I. Luna-Reyes, X. Luo, Y. Ma, D. T. Madigozhin, A. A. Makarov, V. I. Maksimenkova, A. I. Malakhov, M. Malayev, I. A. Maldonado-Cervantes, V. Maleev, I. Malikov, N. A. Maltsev, M. V. Mamaev, N. A. Makarov, M. Maksimov, M. A. Martemianov, P. Martínez-Torres, M. A. Matsyuk, M. Miadzvedzeva, D. I. Melikov, D. G. Melnikov, M. M. Merkin, S. P. Mertz, I. N. Meshkov, V. V. Mialkovski, I. I. Migulina, K. R. Mikhaylov, G. D. Milnov, J. Milosevic, Yu. I. Minaev, S. A. Mituxin, G. V. Mescheriakov, N. A. Molokanova, S. Morozov, A. A. Moshkin, S. A. Movchan, A. N. Moybenko, K. A. Mukhin, Yu. A. Murin, S. Musin, G. G. Musulmanbekov, V. V. Mytsin, E. E. Muravkin, L. Nadderd, R. V. Nagdasev, Yu. Naryshkin, A. V. Nechaevskiy, V. A. Nikitin, V. A. Novoselov, I. A. Olexs, A. G. Olshevski, O. E. Orlov, V. Papoyan, P. E. Parfenov, S. S. Pargicky, M. E. Patiño-Salazar, S. V. Patronova, V. A. Pavlyukevich, I. S. Pelevanyuk, V. A. Penkin, D. Peresunko, D. V. Peshekhonov, V. A. Petrov, V. V. Petrov, A. V. Piliar, A. Piloyan, S. M. Piyadin, M. N. Platonova, D. V. Podgainy, M. Pokidova, V. N. Popov, D. S. Potapov, D. S. Prokhorova, N. A. Prokofiev, D. I. Pryahina, I. Pshenichnov, A. M. Puchkov, N. Pukhaeva, A. Pyatigor, J. Qin, F. Ratnikov, A. Raya, V. Rekovic, M. Reyes-Gutiérrez, S. Reyes-Peña, A. Riabov, S. P. Rode, A. Rodríguez-Álvarez, O. V. Rogachevsky, V. Yu. Rogov, V. A. Rudnev, I. A. Rufanov, M. M. Rumyantsev, I. Rudziankou, Yu. Rusak, A. A. Rybakov, Z. Sadygov, A. U. Sáenz-Trujillo, V. A. Samsonov, A. A. Savenkov, S. Savenkov, S. A. Sedykh, T. V. Semchukova, A. Yu. Semenov, R. N. Semenov, I. A. Semenova, V. Z. Serdyuk, S. V. Sergeev, A. S. Serikkanov, E. V. Serochkin, Yu. Shafarevich, D. Shapaev, O. M. Shaposhnikova, L. M. Shcheglova, M. F. Shopova, D. V. Shchegolev, A. V. Shchipunov, Y. Shen, A. D. Sheremetiev, A. I. Sheremetieva, S. Shi, M. O. Shitenkov, E. E. Shmanay, S. V. Shmatov, I. A. Shmyrev, A. A. Shunko, A. V. Shutov, V. B. Shutov, A. O. Sidorin, S. V. Simak, I. V. Slepnev, V. M. Slepnev, I. P. Slepov, I. A. Smelyansky, A. M. Snigirev, O. V. Sobol, A. N. Solomin, A. S. Sorin, G. G. Stiforov, L. Yu. Stolypina, E. A. Streletskaya, O. I. Streltsova, M. Strikhanov, T. A. Strizh, A. Strizhak, X. Sun, D. A. Suvarieva, A. Svetlichnyi, Z. Tang, M. E. Tejeda-Yeomans, A. Taranenko, V. A. Tchekhovski, D. A. Tereshin, A. V. Terletskiy, O. V. Teryaev, V. V. Tikhomirov, A. A. Timoshenko, G. Tinoco-Santill, V. D. Toneev, N. D. Topilin, T. Yu. Tretyakova, V. V. Trofimov, V. V. Troshin, G. V. Trubnikov, A. Trutse, E. A. Tsapulina, I. Tserruya, I. A. Tyapkin, S. Yu. Udovenko, V. V. Uzhinsky, M. Val'a, F. F. Valiev, V. A. Vasendina, A. Vasilyev, V. V. Vechernin, V. K. Velichkov , S. V. Vereschagin, A. S. Vodopyanov, K. Vokhmyanina, V. Volkov, A. L. Voronin, A. N. Vorontsov, V. Voronyuk, J. Vrláková, J. Wang, X. Wang, Y. Wang, Y. Wang, Y. Wang, Y. Wang, K. Wu, L. Xiao, M. Xiao, G. Xie, C. Yang, H. Yang, Z. Yuan, V. I. Yurevich, S. V. Yurchenko, E. E. Zabrodin, G. Zalite, N. I. Zamyatin, S. A. Zaporojez, A. K. Zarochentsev, W. Zha, M. Zhalov, H. Zhang, Y. Zhang, Z. Zhang, C. Zhao, I. Zhavoronkova, V. I. Zherebchevsky, W. Zhou, X. Zhu, X. Zhu, A. I. Zinchenko, D. I. Zinchenko, V. N. Zruyev, M. Zuev, I. A. Zur, A. P. Zviaygina

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.