Nonlinear optical behavior of chloro antimony (III) hexadecafluorophthalocianinato thin films characterized by Z-scan technique

Authors

  • G. Mendoza-Torres Benemérita Universidad Autónoma de Puebla
  • D. H. Cuate-Gomez Instituto Tecnológico Superior Progreso
  • Y. E. Bravo-García Benemérita Universidad Autónoma de Puebla
  • E. Reynoso-Lara Benemérita Universidad Autónoma de Puebla
  • G. Méndez-Muñoz Benemérita Universidad Autónoma de Puebla
  • J. L. Sosa-Sánchez CIDS-ICUAP
  • M. M. Mendez-Otero Benemérita Universidad Autónoma de Puebla
  • J. A. Dávila-Pintle Benemérita Universidad Autónoma de Puebla

DOI:

https://doi.org/10.31349/RevMexFis.71.061302

Keywords:

Phthalocyanines, Z-scan, Photo-induced lens, Nonlocality

Abstract

In this work, two chloro antimony (III) hexadecafluorophthalocianinato thin films, with two different concentrations were deposited on glass substrates, Z-scan experiments at the wavelength of 633 nm (HeNe laser) and different optical powers were carried out. The results were fitted with the Photo-Induced Lens and Nonlocal theoretical models. Negative and non-local nonlinear optical response behavior is reported.

Author Biographies

G. Mendoza-Torres, Benemérita Universidad Autónoma de Puebla

Facultad de Ciencias de la Electrónica (FCE)

E. Reynoso-Lara, Benemérita Universidad Autónoma de Puebla

Facultad de Ciencias de la Electrónica (FCE)

G. Méndez-Muñoz, Benemérita Universidad Autónoma de Puebla

Facultad de Ciencias Físico-Matemáticas (FCFM)

M. M. Mendez-Otero, Benemérita Universidad Autónoma de Puebla

Facultad de Ciencias Físico-Matemáticas (FCFM)

J. A. Dávila-Pintle, Benemérita Universidad Autónoma de Puebla

Facultad de Ciencias de la Electrónica (FCE)

References

A.Braun and J. Tcherniac, Über die Produkte der Einwirkung von Acetanhydrid auf Phthalamid, Berichte der deutschen chemischen Gesellschaft 40 (1907) 2709, https://doi.org/10.1002/cber.190704002202

H. Bushnaq et al., Phthalocyanine-enabled technologies for water treatment and disinfection strategies, Journal of Water Process Engineering 65 (2024) 105861, https://doi.org/10.1016/j.jwpe.2024.105861

C. Verma et al., Phthalocyanine, naphthalocyanine and their derivatives as corrosion inhibitors: A review, J. Mol. Liq. 334 (2021) 116441, https://doi.org/10.1016/j.molliq.2021.116441

M.Wang and K. Ishii, Photochemical properties of phthalocyanines with transition metal ions, Coord Chem Rev 468 (2022) 214626, https://doi.org/10.1016/j.ccr.2022.214626

A. Günsel et al., Synthesis of non-peripherally tetrasubstituted copper (II) phthalocyanines: characterization, optical and surface properties, fabrication and photo-electrical properties of a photosensitive diode, Dalton Trans. 48 (2019) 14839, https://doi.org/10.1039/C9DT02868D

A. Ogunsipe, D. Maree, and T. Nyokong, Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives, J Mol Struct 650 (2003) 131, https://doi.org/10.1016/S0022-2860(03)00155-8

M. Pis¸kin, O. F. Ozturk, and Z. Odabas, Determination of photophysical, photochemical and spectroscopic properties of novel lead (II) phthalocyanines, Polyhedron 182 (2020) 114480, https://doi.org/10.1016/j.poly.2020.114480

R. Kubiak and J. Janczak, Synthesis, Structure, and UVVis Characterization of Antimony (III) Phthalocyanine: [(SbP c)2(Sb2I8)(SbBr3)]2, Molecules 27 (2022) 1839, https://doi.org/10.3390/molecules27061839

D. K. Modibane and T. Nyokong, Synthesis, photophysical and photochemical properties of octa-substituted antimony phthalocyanines, Polyhedron 28 (2009) 479, https://doi.org/10.1016/j.poly.2008.11.052

S. V. Rao et al., Ultrafast nonlinear optical properties of alkylphthalocyanine nanoparticles investigated using Z-scan technique, J Appl Phys 105 (2009) 3079801 https://doi.org/10.1063/1.3079801

H. Zhang et al., Phthalocyanine covalent frameworks doped in PMMA matrix as high performance nonlinear optical limiter, Dyes and Pigments 219 (2023) 111553, https://doi.org/10.1016/j.dyepig.2023.111553

H. Lu and N. Kobayashi, Optically Active Porphyrin and Phthalocyanine Systems, Chem. Rev. 116 (2016) 6184, https://doi.org/10.1021/acs.chemrev.5b00588

M. Kocak et al., Synthesis and comparison of the performance of two different water-soluble phthalocyanine based electrochemical biosensor, Bioelectrochemistry 160 (2024) 108788, https://doi.org/10.1016/j.bioelechem.2024.108788

O. A. Hamad, R. O. Kareem, and P. K. Omer, Recent Developments in Synthesize, Properties, Characterization, and Application of Phthalocyanine and Metal Phthalocyanine, J. Chem. Rev. 6 (2024) 39, https://doi.org/10.48309/jcr.2024.412899.1250

H. Isago and Y. Kagaya, Facile Antimony(V/III) Interconversion in Phthalocyanine Complexes, Chem. Lett. 35 (2006) 8, https://doi.org/10.1246/cl.2006.8

M. Sheik-Bahae et al., Sensitive measurement of optical nonlinearities using a single beam, IEEE J Quantum Electron 26 (1990) 760, https://doi.org/10.1109/3.53394

E. Reynoso-Lara et al., Influence of the photoinduced focal length of a thin nonlinear material in the Z-scan technique, Opt. Express 15 (2007) 2517, https://doi.org/10.1364/OE.15.002517

E. V. Garcia-Ramirez et al., Z-scan and spatial self-phase modulation of a Gaussian beam in a thin nonlocal and nonlinear media, J. Opt. 13 (2011) 085203, https://doi.org/10.1088/2040-8978/13/8/085203

I. Severiano-Carrillo et al., Comparison of different models employed to describe the z-scan curves for thick nonlinear optical media, J. Mod. Opt. 60 (2013) 248, https://doi.org/10.1080/09500340.2013.769639

Downloads

Published

2025-11-01

How to Cite

[1]
G. Mendoza-Torres, “Nonlinear optical behavior of chloro antimony (III) hexadecafluorophthalocianinato thin films characterized by Z-scan technique”, Rev. Mex. Fís., vol. 71, no. 6 Nov-Dec, pp. 061302 1–, Nov. 2025.