Structural, elastic, electronic and magnetic properties of quaternary Heusler alloy Cu2MnSi1-xAlx (x = 0 - 1): First-principles study
DOI:
https://doi.org/10.31349/RevMexFis.64.135Keywords:
Electronic structure, elastic properties, ab-initio calculations, quaternary Heusler alloys.Abstract
We investigate the structural, elastic, electronic and magnetic properties of the Heusler compounds Cu2MnSi, Cu2MnAl and Cu2MnSi1-xAlx quaternary alloys, using the full-potential linear-augmented plane-wave method (FP-LAPW) in the framework of the density functional theory (DFT) using the generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE). Our results provide predictions for the quaternary alloy Cu2MnSi1-xAlx (x = 0.125, 0.25, 0.375, 0.5) in which no experimental or theoretical data are currently available. We calculate the ground state’s properties of Cu2MnSi1-xAlx alloys for both nonmagnetic and ferromagnetic configurations, which lead to ferromagnetic and metallic compounds. Also, the calculations of the elastic constants and the elastic moduli parameters show that these quaternary Heusler alloys are ductile and anisotropic.
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.