Newton’s law of cooling with fractional conformable derivative

Authors

  • Abraham Ortega División de Ingenierías Campus Irapuato-Salamanca, Universidad de Guanajuato. Carretera Salamanca-Valle de Santiago, km. 3.5 + 1.8 km. Comunidad de Palo Blanco, Salamanca, Guanajuato México.
  • J. Juan Rosales División de Ingenierías Campus Irapuato-Salamanca, Universidad de Guanajuato. Carretera Salamanca-Valle de Santiago, km. 3.5 + 1.8 km. Comunidad de Palo Blanco, Salamanca, Guanajuato México.

DOI:

https://doi.org/10.31349/RevMexFis.64.172

Keywords:

Newton law of cooling, Conformable derivative

Abstract

The fractional conformable derivative and its properties have been introduced recently. Using this derivative we obtain a new class of smooth solutions for the Newton’s law of cooling in terms of a stretched exponential function depending on the fractional order parameter 0 < γ ≤ 1. In addition, the convection coefficient of fractional order k(γ) can be calculated easily. Also, it is shown, that in the particular case γ = 1 these solutions become the ordi- nary ones.

Downloads

Published

2018-03-14

How to Cite

[1]
A. Ortega and J. J. Rosales, “Newton’s law of cooling with fractional conformable derivative”, Rev. Mex. Fís., vol. 64, no. 2 Mar-Apr, pp. 172–175, Mar. 2018.

Issue

Section

07 Gravitation, Mathematical Physics and Field Theory