Lorentzian surfaces and the curvature of the Schmidt metric

Authors

  • Yafet Sanchez Sanchez University of Southampton
  • Cesar Merlin Centro Brasileiro de Pesquisas F´ısicas
  • Ricardo Reynoso Fuentes Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.31349/RevMexFis.64.429

Keywords:

gravitational singularities

Abstract

The b-boundary is a mathematical tool used to attach a topological boundary to incomplete Lorentzian manifolds using a Riemaniann metric called the Schmidt metric on the frame bundle. In this paper we give the general form of the Schmidt metric in the case of Lorentzian surfaces. Furthermore, we write the Ricci scalar of the Schmidt metric in terms of the Ricci scalar of the Lorentzian manifold and give some examples. Finally, we discuss some applications to general relativity.

Downloads

Published

2018-06-28

How to Cite

[1]
Y. Sanchez Sanchez, C. Merlin, and R. Reynoso Fuentes, “Lorentzian surfaces and the curvature of the Schmidt metric”, Rev. Mex. Fís., vol. 64, no. 4 Jul-Aug, pp. 429–438, Jun. 2018.

Issue

Section

07 Gravitation, Mathematical Physics and Field Theory