Bound states in the continuum and time evolution of the generalized eigenfunctions
DOI:
https://doi.org/10.31349/RevMexFis.64.464Keywords:
Bound states in the continuum, Darboux transformations, Jordan chainAbstract
We study the Jost solutions for the scattering problem of a von Neumann-Wigner type potential, constructed by means of a two times iterated and completely degenerated Darboux transformation. We show that for a particular energy the unnormalizedJost solutions coalesce to give rise to a Jordan cycle of rank two. Performing a pole decomposition of the normalized Jost solutions we find the generalized eigenfunctions: one is a normalizable function corresponding to the bound state in the continuum and the other is a bounded, non-normalizable function. We obtain the time evolution of these functions as pseudo-unitary, characteristic of a pseudo-Hermitian system.Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.