Mathematical modeling of DNA vibrational dynamics and its solitary wave solutions
DOI:
https://doi.org/10.31349/RevMexFis.64.590Keywords:
Expansion method, DNA vibration dynamics, solitary wave solutions.Abstract
In this work, the traveling wave solutions of a mathematical modeling of DNA vibration dynamics proposed by Peyrard-Bishop, that takes into consideration the inclusion of nonlinear interaction between adjacent displacements along the Hydrogen bonds, is investigated by both $(G'/G)$-expansion and $F$-expansion methods. Using these methods, some new explicit forms of traveling wave solutions of present nonlinear equation are given. The methods come in to be easier and faster by means of a symbolic computation and yield powerful mathematical tools for solving nonlinear evolution equations in many branches of sciences, especially physics, biology and etc.Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.