Magnetohydrodynamic Jeffrey nanoliquid flow with thermally radiative Newtonian heat and mass species
DOI:
https://doi.org/10.31349/RevMexFis.64.628Keywords:
Three-dimensional flow, Jeffrey liquid, Nanoparticles, Newtonian conditions, Bidirectional surfaceAbstract
This study characterizes the properties of Newtonian heat and mass species conditions in three-dimensional Jeffrey nanoliquid flow generated by the movement of thermally radiative surface. The liquid flow is electrically conducting through the consideration of magnetic field. The aspects of heat absorption, generation and thermal radiation are considered in the equation of energy conservation. The boundary layer phenomenon is employed to obtain the mathematical expressions of considered physical model. These equations are solved via homotopic scheme. The convergence of homotopic solutions is validated by the numerical data. The importance of physical constraints on temperature and nanoparticle concentration of liquid is visualized by the graphical results.
Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.