A comparative analysis of the RC circuit with local and non-local fractional derivatives

Authors

  • J. Juan Rosales García Departamento de Ingeniería Eléctrica División de Ingenierías Campus Irapuato-Salamanca Universidad de Guanajuato
  • J. David Filoteo Departamento de Ingeniería Eléctrica División de Ingenierías Campus Irapuato-Salamanca Universidad de Guanajuato
  • Andrés González Escuela de Nivel Medio Superior Universidad de Guanajuato

DOI:

https://doi.org/10.31349/RevMexFis.64.647

Keywords:

Electrical circuits, conformable derivative, fractional derivative.

Abstract

This work is devoted to investigate solutions to RC circuits using four different types of time fractional diferential operators of order  0 < γ ≤ 1. The fractional derivatives considered are, Caputo, Caputo-Fabrizio, Atangana-Baleanu and the conformable derivative. It is shown that Atangana-Baleanu fractional derivative (non-local), and the conformable (local) derivative could describe a wider class of physical processes then the Caputo and Caputo-Fabrizio. The solutions are exactly equal for all four erivatives only for the case γ=1.

Downloads

Published

2018-10-31

How to Cite

[1]
J. J. Rosales García, J. D. Filoteo, and A. González, “A comparative analysis of the RC circuit with local and non-local fractional derivatives”, Rev. Mex. Fís., vol. 64, no. 6 Nov-Dec, pp. 647–654, Oct. 2018.

Issue

Section

14 Other areas in Physics