Fake calibration attack using a beam sampler in a continuous variable-quantum key distribution system

Authors

  • J. A. Lopez-Leyva CETYS University http://orcid.org/0000-0002-3004-5686
  • A. Talamantes-Alvarez CICESE Research Center
  • E. A. Mejia CETYS University
  • J. Estrada CETYS University
  • M. Ponce Camacho CETYS University
  • V. Ramos Garcia Universidad de Sonora
  • L. Casemiro Oliveira Universidade Federal Rural do Semi-Árido

DOI:

https://doi.org/10.31349/RevMexFis.66.228

Keywords:

Quantum cryptography, unbalanced optical paths, state of polarization, calibration attack

Abstract

A Fake Calibration Attack process for a Continuous Variable-Quantum Key Distribution system using a Beam Sampler is presented. The Fake Calibration Attack allows a calibration that balances the Standard Quantum Limit for all the optical path in the experiment (differential Standard Quantum Limit is ≈ 0.39 dB) allowing Eve to acquire ≈ 0.0671 for a particular information quadrature which establishes a Quantum Bit Error Rate ≈ 5.8%. As a final result, the balancing of the Standard Quantum Limit for both states of polarization signals allows maintaining the overall Quantum Bit Error Rate at a particular value ≈ 3%, which implies an important basis for detecting a potential spy considering the minimum Quantum Bit Error Rate.

References

G. Kołaczek and J. Mizera-Pietraszko, J. Inform. Telecommun., 2 (2018) 428.

T. Zhou, et. al., Secur. Commun. Netw., 2018 (2018)1.

T. Mor and V. Roychowdhury, Quantum Communication, Computing, and Measurement 3, (Springer, Boston, MA, 2002), pp. 277–284.

Y. Z. Law, L. P. Thinh, J.-D. Bancal, and V. Scarani, J. Phys. A: Math. Theor., 47 (2014) 424028.

F. Hufnagel, et. al., Optics Express, 27 (2019) 26346.

E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, npj Quantum Inform., 2 (2016) 1.

S. L. Braunstein and S. Pirandola, Phys. Rev. Lett., 108 (2012) 130502.

D. Gottesman, Hoi-Kwong Lo, N. Lutkenhaus, and J. Preskill, Proceedings International Symposium on Information Theory, 2004.

P. J. Coles, E. M. Metodiev, and N. Lütkenhaus, Nat. Commun., 7 (2016) 11712.

S. Arnon, et. al., Quantum Communications and Quantum Imaging XVI, (2018) 107710T.

P. Kumar and R. J. Clifton, J. Appl. Phys., 48 (1977) 1366.

Z. Qu and I. B. Djordjevic, Photon. J., 10 (2018) 1.

F. Karinou, et. al., Photon. Techn. Lett., 30 (2018) 650.

H. H. Brunner, et. al., Optical Fiber Communication Conference (2019).

J.A. Lopez-Leyva, et. al., Opt. Appl., XLVII (2017) 411.

J.A. Lopez-Leyva J.A. and A. Arvizu-Mondragon, Microw. Opt. Techn. Lett., 57 (2015) 1349.

R. Filip, Phys. Rev. A, 67 (2003) 042111.

A.R. Dixon, et. al., Sci. Rep, 7 (2017) 1978.

N. Jain, et. al., Contemp. Phys., 57 (2016) 366.

S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, Nat. Commun., 8 (2017) 1.

Downloads

Published

2020-03-01

How to Cite

[1]
J. A. Lopez-Leyva, “Fake calibration attack using a beam sampler in a continuous variable-quantum key distribution system”, Rev. Mex. Fís., vol. 66, no. 2 Mar-Apr, pp. 228–231, Mar. 2020.