Calcination effects on the crystal structure and magnetic properties of CoFe2O4 nanopowders synthesized by the coprecipitation method

Authors

DOI:

https://doi.org/10.31349/RevMexFis.66.251

Keywords:

Cobalt ferrite, nanostructured materials, coprecipitation, crystal structure, magnetization.

Abstract

Cobalt ferrite nanopowders were successfully synthesized by the coprecipitation method and subsequent calcinations at 873 and 1073 K. The effects of the thermal treatments on the crystal structure, particle size and magnetic properties of the nanocompounds were investigated. The particle sizes were determined from transmission electron microscopy and an increase in sizes with the increment in calcination temperature was observed. The mean particle sizes were 29 and 42 nm, for samples calcined at 873 and 1073 K, respectively. By X-ray diffraction it was determined that the nanoparticles crystallized in the cubic spinel structure. Additionally, Fourier transform infrared spectroscopy studies confirms the presence of spinel metal oxide. The magnetization measurements as a function of the temperature and the applied magnetic field suggested that a large part of the nanoparticles calcined at 873 K present a superparamagnetic behavior at room temperature, while those calcined at 1073 K are mainly in the blocked regime at temperatures below 320 K. In addition, remarkably high coercivities of approximately 10.7 and 12.4 kOe were observed at low temperatures, for the nanopowders calcined at 873 and 1073 K, respectively.

Author Biographies

G. Márquez, Universidad de Los Andes

Profesor Agregado del Departamento de Física.

V. Sagredo, Universidad de Los Andes

Profesor titular del Departamento de Física.

R. Guillén-Guillén, Universidad de Los Andes

Profesor Asistente del Departamento de Física

References

L. Néel, Ann. Phys. (N. Y). 3 (1948) 137.

J. Smit and H. P. J. Wijn, Ferrites (Philips Technical Library, Eindhoven, 1959).

R. Valenzuela, Phys. Res. Int. 2012 (2012) 1.

S. Hazra and N. N. Ghosh, J. Nanosci. Nanotechnol. 14 (2014) 1983.

V. G. Harris, et al., J. Magn. Magn. Mater. 321 (2009) 2035.

I. Sharifi, H. Shokrollahi, and S. Amiri, J. Magn. Magn. Mater. 324 (2012) 903.

D. S. Mathew and R.-S. Juang, Chem. Eng. J. 129 (2007) 51.

S. Amiri and H. Shokrollahi, Mater. Sci. Eng. C 33 (2013) 1.

T. A. S. Ferreira, J. C. Waerenborgh, M. H. R. M. Mendonça, M. R. Nunes, and F. M. Costa, Solid State Sci. 5 (2003) 383.

S. D. Bhame and P. A. Joy, Sensors Actuators A Phys. 137 (2007) 256.

I. H. Gul, A. Maqsood, M. Naeem, and M. N. Ashiq, J. Alloys Compd. 507 (2010) 201.

J. Wang, T. Deng, Y. Lin, C. Yang, and W. Zhan, J. Alloys Compd. 450 (2008) 532.

C. Jaimes, E. Santiago, V. Sagredo, and G. Márquez, Cienc. e Ing. 40 (2019) 165.

M. Mozaffari, J. Amighian, and E. Darsheshdar, J. Magn. Magn. Mater. 350 (2014) 19.

P. C. R. Varma, R. S. Manna, D. Banerjee, M. R. Varma, K. G. Suresh, and A. K. Nigam, J. Alloys Compd. 453 (2008) 298.

A. B. Salunkhe, V. M. Khot, M. R. Phadatare, and S. H. Pawar, J. Alloys Compd. 514 (2012) 91.

G. Márquez and V. Sagredo, Ciencia 19 (2011) 277.

M. J. Iqbal and M. R. Siddiquah, J. Alloys Compd. 453 (2008) 513.

W. S. S. Chiu, S. Radiman, R. Abd-Shukor, M. H. H. Abdullah, and P. S. S. Khiew, J. Alloys Compd. 459 (2008) 291.

S. Gyergyek, D. Makovec, A. Kodre, I. Arčon, M. Jagodič, and M. Drofenik, J. Nanoparticle Res. 12 (2010) 1263.

E. Swatsitang, S. Phokha, S. Hunpratub, B. Usher, A. Bootchanont, S. Maensiri, and P. Chindaprasirt, J. Alloys Compd. 664 (2016) 792.

F. Morales, G. Márquez, V. Sagredo, T. E. Torres, and J. C. Denardin, Phys. B Condens. Matter 572 (2019) 214.

J. B. Silva, W. de Brito, and N. D. S. Mohallem, Mater. Sci. Eng. B 112 (2004) 182.

E. Pérez, G. Márquez, and V. Sagredo, Iraqi J. Appl. Phys. 15 (2019) 13.

S. E. Shirsath, B. G. Toksha, and K. M. Jadhav, Mater. Chem. Phys. 117 (2009) 163.

R. D. Waldron, Phys. Rev. 99 (1955) 1727.

A. A. Ati, Z. Othaman, and A. Samavati, J. Mol. Struct. 1052 (2013) 177.

D. Peddis, C. Cannas, A. Musinu, and G. Piccaluga, Chemistry 15 (2009) 7822.

T. Meron, Y. Rosenberg, Y. Lereah, and G. Markovich, J. Magn. Magn. Mater. 292 (2005) 11.

B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, 2nd ed. (IEEE Press, New York, 2009).

Downloads

Published

2020-05-01

How to Cite

[1]
G. Márquez, V. Sagredo, R. Guillén-Guillén, G. Attolini, and F. Bolzoni, “Calcination effects on the crystal structure and magnetic properties of CoFe2O4 nanopowders synthesized by the coprecipitation method”, Rev. Mex. Fís., vol. 66, no. 3 May-Jun, pp. 251–257, May 2020.