Macroscopic visual displacement of a polymer solution for enhanced oil recovery: Hele-Shaw cell experiments and computational simulation

Authors

  • S. de Santiago Centro de Investigación e Innovación Tecnológica - Instituto Politécnico Nacional
  • O. Olivares-Xometl Benemérita Universidad Autónoma de Puebla, Facultad de Ingeniería Química
  • N. V. Likhanova Instituto Mexicano del Petróleo
  • I. V. Lijanova Centro de Investigación e Innovación Tecnológica - Instituto Politécnico Nacional http://orcid.org/0000-0003-1682-4509
  • P. Arellanes-Lozada Benemérita Universidad Autónoma de Puebla, Facultad de Ingeniería Química

DOI:

https://doi.org/10.31349/RevMexFis.66.273

Keywords:

EOR, polymer flooding, Hele-Shaw cell, SAV polymer, multiphasic simulation

Abstract

Numerous laboratory studies and field application tests have shown that polymer flooding is an effective method to improve the oil recovery by displacing residual oil after water flooding. In this work, a series of visual model displacement experiments was conducted in Hele-Shaw cells to determine the effectiveness of polymer flooding in homogeneous and fractured media with a fracture parallel or perpendicular to the flow direction. The matrix with parallel fracture to the flow direction presented a delay in the oil production process during water and polymer flooding with respect to the homogeneous medium and the one with perpendicular fracture, where the highest recovery numbers during waterflooding and polymer flooding were achieved for the medium with perpendicular fracture to the flow direction, reaching 56 % of cumulative oil recovery. The displacement results and multiphasic simulation show that the homogeneous medium is an attractive candidate for additional recovery application with polymer flooding after water flooding when the oil production reached almost zero, although the production rate is lower than the one obtained for a porous medium with a fracture perpendicular to the flow direction.

References

CNH, (2012) 1.

S. Kokal ,A. Al-Kaabi, Glob. Energy Solut. (2010) 64.

S. Thomas, Oil Gas Sci. Technol. … 63 (2008) 9.

Y. Zhu, (2015).

Z. Meng ,S.L. Yang ,Y. Cui ,Z.Y. Zhong ,C.G. Liang ,L. Wang ,K. Qian ,Q.Z. Ma ,J.R. Wang, Pet. Sci. 15 (2018) 783.

J.J. Sheng, Petroleum 1 (2015) 97.

O. Taiwo ,K. Bello ,I. Mohammed ,O. Olafuyi, Int. J. Eng. Res. Africa 21 (2015) 136.

L. Renqing, J. Pet. Gas Eng. 4 (2013) 46.

M. Han ,W. Xiang ,J. Zhang ,W. Jiang ,F. Sun, Soc. Pet. Eng. (2006) 6.

S. Pal ,M. Mushtaq ,F. Banat ,A.M. Al Sumaiti, Pet. Sci. 15 (2018) 77.

X. Yang ,Y. Du ,X. Zhang ,A. He ,Z.K. Xu, Langmuir 33 (2017) 2318.

M. Lacey ,C. Hollis ,M. Oostrom ,N. Shokri, Energy & Fuels (2017) acs. energyfuels.7b01254.

C. Odier ,B. Levaché ,E. Santanach-Carreras ,D. Bartolo, Phys. Rev. Lett. 119 (2017) 1.

M. Trojer ,M.L. Szulczewski ,R. Juanes, Phys. Rev. Appl. 3 (2015).

H. Schütt ,H. Spetzler, Pure Appl. Geophys. 158 (2001) 627.

J.A. Hayashi ,A. Soria, AIChE J. 47 (2001) 1513.

P.G. Saffman ,G. Taylor, Proc. R. Soc. A Math. Phys. Eng. Sci. 245 (1958) 312.

Z. Kargozarfard ,M. Riazi ,S. Ayatollahi, Pet. Sci. 16 (2018) 105.

B. Zhao ,K.K. Mohanty, J. Pet. Sci. Eng. 174 (2019) 738.

B. Zhao ,C.W. MacMinn ,R. Juanes, Proc. Natl. Acad. Sci. 113 (2016) 10251.

M. Piller ,D. Casagrande ,G. Schena ,M. Santini, J. Phys. Conf. Ser. 501 (2014) 012010.

M. Chen ,Z. Lu ,G.A. Zyvoloski, Stoch. Environ. Res. Risk Assess. 22 (2008) 587.

B. Lagrée ,S. Zaleski ,I. Bondino, Transp. Porous Media 113 (2016) 491.

H.S. Behbahani ,G. Di Donato ,M.J. Blunt, J. Pet. Sci. Eng. 50 (2006) 21.

X. Zhang ,A. Shapiro ,E.H. Stenby, Transp. Porous Media 92 (2012) 767.

E. Holzbecher, in: COMSOL Conf., Milan, 2009.

C.A. Chung ,H.Y. Lin, Transp. Porous Media 120 (2017) 309.

L. Sun ,C. Zou ,X. Liu ,R. Zhu ,X. Wang, Pet. Sci. 11 (2014) 469.

M.A.F. Zarandi ,K.M. Pillai, Am. Inst. Chem. Eng. (2017).

S. Huang ,Y. Guo ,Y. Liu ,L. Ke ,G. Liu ,C. chen, Appl. Therm. Eng. 135 (2018) 435.

W.A.M. Wanniarachchi ,P.G. Ranjith ,M.S.A. Perera ,T.D. Rathnaweera ,C. Zhang ,D.C. Zhang, J. Nat. Gas Sci. Eng. 53 (2018) 249.

O.A. Logvinov, Transp. Porous Media 124 (2018) 495.

M. Ayub ,R.G. Bentsen, J. Pet. Sci. Eng. 23 (1999) 13.

A.K. Datta ,S. Sahin ,G. Sumnu ,S. Ozge Keskin, J. Food Eng. 79 (2007) 106.

S. Peng ,A. Hassan ,R.G. Loucks, Mar. Pet. Geol. 77 (2016) 763.

F. Sun ,Y. Yao ,G. Li ,S. Zhang ,Z. Xu ,Y. Shi ,X. Li, J. Pet. Sci. Eng. 172 (2019) 139.

Q. Yuan ,S. Yao ,X. Zhou ,F. Zeng ,K.D. Knorr ,M. Imran, J. Pet. Sci. Eng. 159 (2017) 344.

Downloads

Published

2020-05-01

How to Cite

[1]
S. de Santiago, O. Olivares-Xometl, N. V. Likhanova, I. V. Lijanova, and P. Arellanes-Lozada, “Macroscopic visual displacement of a polymer solution for enhanced oil recovery: Hele-Shaw cell experiments and computational simulation”, Rev. Mex. Fís., vol. 66, no. 3 May-Jun, pp. 273–282, May 2020.