Highly dispersive optical solitons having Kerr law of refractive index with Laplace-Adomian decomposition

Authors

  • O. González Gaxiola Universidad Autónoma Metropolitana-Cuajimalpa
  • Anjan Biswas Department of Physics, Chemistry and Mathematics, Alabama A\&M University
  • Ali Saleh Alshomrani Department of Mathematics, King Abdulaziz University

DOI:

https://doi.org/10.31349/RevMexFis.66.291

Keywords:

Nonlinear Schr\"{o}dinger equation, Bright solitons, Higher-order dispersion, Laplace-Adomian decomposition method

Abstract

This paper studies highly dispersive optical solitons, having Kerr law of refractive index, numerically. The adopted scheme is Laplace-Adomian decomposition method. Bright soliton solutions are displayed along with their respective error analysis.

References

Kudryashov N A. Construction of nonlinear differential equations for description of propagation pulses in optical fiber. Optik 2019; 192: 162964.

Kudryashov N A. Solitary and periodic waves of the hierarchy for propagation pulse in optical fiber. Optik 2019; 194: 163060.

Biswas Anjan, Kara A H, Alshomrani A S, Ekici M, Zhou Q, Belic M R. Conservation laws for highly dispersive optical solitons.

Optik 2019; 199: 163283.

Rehman H U, Ullah N, Imran M A. Highly dispersive optical solitons using Kudryashov's method. Optik 2019; 199: 163349.

Abazari R, Jamshidzadeh S, Wang G. Mathematical modeling of DNA vibrational dynamics and its solitary wave solutions. Rev. Mex. de Física 2018; 64: 590-597.

Biswas Anjan, Ekici M, Sonmezoglu A, Belic M R. Highly dispersive optical solitons with Kerr law nonlinearity by F-expansion. Optik 2019; 181: 1028-1038.

Kohl R W, Biswas Anjan, Ekici M, Zhou Q, Khan S, Alshomrani A S, Belic M R. Highly dispersive optical soliton perturbation with Kerr law bysemi-inverse variational principle. Optik 2019; 199: 163226.

Biswas Anjan, Ekici M, Sonmezoglu A, Belic M R. Highly dispersive optical solitons with kerr law nonlinearity by extended Jacobi's elliptic function expansion. Optik 2019; 183: 395-400.

Adomian G. Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers, Boston MA 1994.

Khuri S A. A Laplace decomposition algorithm applied to class of nonlinear differential equations. J Math Appl 2001; 4: 141-155.

Rach R. A convenient computational form for the Adomian polynomials. J Math Anal Appl 1984; 102: 415-419.

Wazwaz A M. A new algorithm for calculating Adomian polynomials for nonlinear operators. Appl Math Comput 2000; 111: 33-51.

Downloads

Published

2020-05-01

How to Cite

[1]
O. González Gaxiola, A. Biswas, and A. S. Alshomrani, “Highly dispersive optical solitons having Kerr law of refractive index with Laplace-Adomian decomposition”, Rev. Mex. Fís., vol. 66, no. 3 May-Jun, pp. 291–296, May 2020.

Issue

Section

07 Gravitation, Mathematical Physics and Field Theory