Study of the critical probability of percolation in a 3D system with pores of random radius for variable grids
DOI:
https://doi.org/10.31349/RevMexFis.66.315Keywords:
Clustering, Percolation, Pores, GridAbstract
We numerically study the percolation in 3D porous materials, populated by pores with random sizes at 3D grid of variable sizes. We identify the clusters for each grid as well the infinite cluster that is defined by the critical probability through the neighborhood hybrid structure method. Also we determine the characteristic size of each cluster in the material as well the volume of the infinite cluster that allows optimizing the percolation step at our simulation. In this work several tests were performed by variation the size of the grid. This allows us to determine the optimal size and how it affects the percolation by the simulating grids. Our main results show that in systems with pores having random radius the critical probability increases when size of grid L>40 (that correspond to typical size system about 4000 nm) with respect of the inform pores case.
References
A. Klemm, H.P. Müller, R. Kimmich, Phys. Rev. E 55 (1997) 4413.
G. Burlak, G. Medina-Angel, PIER. 74(2018) 77.
A. Oleinikova , I. Brovchenko, A. Geiger, B.Guillot, J. Chem. Phys. 117(2002) 3296.
L. Lu, R. Capek, A.Kornowski, N. Gaponik, A. Eychmüller, Angew. Chem. Int. 44(2005) 5997.
O.D. Velev, P.M. Tessier, A.M. Lenhoff, E.W. Kaler, Nature 401(1999) 548.
R. Bleta, A. Lannoy, C. Machut, E. Monier, A. Ponchel, Langmuir 30(2014) 11812.
T.D. Nguyen, C.T. Dinh, T.O. Do, Chem. Commun. 51(2015) 624.
J.L. Figueiredo, Surface and Coatings Technology 350(2018) 307.
B.Jang,K. Yang, B. Quan, Y. Piao, Mat. Lett. 104(2013) 68.
L. Zhang, K. Chen, S. Wang, S. Chen, S. Niu, Z. Wang, P. Du, Mat. Lett. 233(2018) 306.
S. Kirkpatrick. Rev. Mod. Phys. 45(1973) 574.
H.R. Seung, B.C. Hong, K. Seil , T.K. Young, L. Jimin , R.P Kee, H.C. Yong, Comp. Sci. Tech. 165(2018) 1.
F. Körmann, A. Dick, T. Hickel , J. Neugebauer, Phys. Rev. B. 81(2010) 134425.
G. Wang, C. Wang, F. Zhang, X. Yu, Z. Faling, Y.Xiaozhu, Comp. Mat. Sci. 50(2018) 102.
L. Jianjun, C. Huisu, Pow. Tec. 335(2018) 388.
J.F. Gouyet, M. Rosso, Phys. A: Statistical Mechanics and its Applications. 357(2005) 86.
P. Timonin, Physica A. 492(2018) 2292.
T. Pak, I.B. Butler, S. Geiger, M.I.van Dijke, K.S. Sorbie, PNAS. 112(2015) 1947.
M. Rosso, J.F. Gouyet, B. Sapoval, Phys. Rev. Lett. 57(1986) 3195.
D. Wilkinson, J. F. Willemsen, J. Phys. A: Math. Gen. 16(1983) 3365.
P. Sotta, D. Long, Eur. Phys. J. E. 11(2003) 375.
R.M. Bradley, P.N. Strenski, J.M. Debierre, Phys. Rev. B. 44(1991) 76.
A.Y. Smolin, N.V. Roman, I.S. Konovalenko, G.M. Eremina, S.P. Buyakova, S.G. Psakhie, Eng. Frac. Mech. 130(2014) 53.
M. Franceschetti, O. Dousse, N.C. David, P. Thiran, IEEE TIT. 53(2007) 1009.
Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.