A comprehensive description of elastic scattering angular distributions for eight different density distribution of 32S nucleus

Authors

  • T. Ulucay Bitlis Eren University
  • M. Aygun Bitlis Eren University

DOI:

https://doi.org/10.31349/RevMexFis.66.336

Keywords:

Density Distribution, Optical Model, Double Folding.

Abstract

The elastic scattering angular distributions of 32S projectile by 12C, 27Al, 40Ca, 48Ca, 48Ti, 58Ni, 63Cu, 64Ni, 76Ge, 96Mo and 100Mo targets over the energy range 83.3 - 180 MeV are analyzed in the framework of the double folding model based on the optical model. The real part of the optical model potential is obtained by using double folding model for eight different density distributions of 32S which consist of Ngo, SP, 2pF, G1, G2, S, 3pF, and HFB. The imaginary part of the optical model potential is accepted as the Woods-Saxon (WS) potential. The theoretical results successfully reproduce the experimental data over both a wide energy and a wide target nucleus. Finally, simple and useful formulas which predict imaginary potential depths of each density are derived based on the elastic scattering results.

References

https://www.nndc.bnl.gov/nudat2/

https://www.tracesciences.com/s.htm

M. Aygun, O. Kocadag and Y. Sahin, Rev. Mex. Fis. 61 (2015) 414-420.

M. Aygun, Rev. Mex. Fis. 62 (2016) 336-343.

M. Aygun and Z. Aygun Rev. Mex. Fis. 65 (2019) 404-411.

M. Aygun, Braz. J. Phys. 49 (2019) 760-771.

M. Aygun, Pramana - J. Phys. 93 (2019) 72.

G.R. Satchler, Direct Nuclear Reactions, Oxford University Press, Oxford,

J. Cook, Commun. Comput. Phys. 25 (1982) 125-139.

I.J. Thompson, Comput. Phys. Rep. 7 (1988) 167.

C. Ngˆo et al., Nucl. Phys. A 252 (1975) 237.

H. Ngˆo and C. Ngˆo, Nucl. Phys. A 348 (1980) 140.

L.C. Chamon et al., Phys. Rev. C 66 (2002) 014610.

W.M. Seif and H. Mansour, Int. J. Mod. Phys. E 24 (2015) 1550083.

R.K. Gupta, D. Singh and W. Greiner, Phys. Rev. C 75 (2007) 024603.

O.N. Ghodsi and F. Torabi, Phys. Rev. C 92 (2015) 064612.

R.K. Gupta, D. Singh, R. Kumar and W. Greiner, J. Phys. G: Nucl. Part.

Phys. 36 (2009) 075104.

H. Schechter and L.F. Canto, Nucl. Phys. A 315 (1979) 470.

G.C. Li, M.R. Yearian and I. Sick, Phys. Rev. C 9 (1974) 1861.

A.K. Hamoudi, ANJS 13 (2012) 105-113.

http://www-nds.iaea.org/ripl-2.html.

M. El-Azab Farid and M.A. Hassanain, Nucl. Phys. A 678 (2000) 39.

G.D. Alkhazov et al., Nucl. Phys. A 280 (1977) 365.

C.W. De Jager, H. De Vries and C. De Vries, At. Data Nucl. Data Tables

(1974) 479.

W. Zou, Y. Tian and Z.Yu. Ma, Phys. Rev. C 78 (2008) 064613.

L.A. Schaller et al., Nucl. Phys. A 300 (1978) 225.

J. Streets, B.A. Brown and P.E. Hodgson, J. Phys. G: Nucl. Phys. 8 (1982)

-850.

G.C. Li, I. Sick and M.R. Yearian, Phys. Lett. B 37 (1971) 282.

C.S. Wu and L. Willets, Ann. Rev. Nucl. Sci. 19 (1969) 527.

I. Angeli and K.P. Marinova, At. Data Nucl. Data Tables 99 (2013) 69.

N. Arena et al., II Nuovo Cimento 100 (1988) 6.

J.D. Garrett et al., Phys. Rev. C 12 (1975) 489.

G.R. Satchler and W.G. Love, Phys. Report 55 (1979) 183-254.

F. Porto et al., Nucl. Phys. A 351 (1981) 237-245.

A.M. Stefanini et al., Phys. Rev. C 41 (1990) 1018.

S. Agnoli et al., Nucl. Phys. A 464 (1987) 103-124.

A.M. Stefanini et al., Phys. Rev. Lett. 59 (1987) 2852.

G. Guillaume et al., Phys. Rev. C 26 (1982) 2458.

D.M. Herrick et al., Phys. Rev. C 52 (1995) 744.

Downloads

Published

2020-05-01

How to Cite

[1]
T. Ulucay and M. Aygun, “A comprehensive description of elastic scattering angular distributions for eight different density distribution of 32S nucleus”, Rev. Mex. Fís., vol. 66, no. 3 May-Jun, pp. 336–343, May 2020.