Experimental setup for the production of ultracold strongly correlated fermionic superfluids of 6Li

Authors

  • D. Hernandez-Rajkov Instituto de Física, Universidad Nacional Autónoma de México http://orcid.org/0000-0003-1473-8869
  • J. E. Padilla-Castillo Instituto de Física, Universidad Nacional Autónoma de México.
  • M. Mendoza-Lopez Instituto de Física, Universidad Nacional Autónoma de México.
  • R. Colin-Rodriguez Instituto de Física, Universidad Nacional Autónoma de México.
  • A. Gutierrez-Valdes Instituto de Física, Universidad Nacional Autónoma de México.
  • S. A. Morales-Ramirez Instituto de Física, Universidad Nacional Autónoma de México.
  • R. A. Gutierrez-Arenas Instituto de Física, Universidad Nacional Autónoma de México.
  • C. A. Gardea-Flores Instituto de Física, Universidad Nacional Autónoma de México.
  • R. Jauregui-Renaud Instituto de Física, Universidad Nacional Autónoma de México.
  • J. A. Seman Instituto de Física, Universidad Nacional Autónoma de México.
  • F. J. Poveda-Cuevas Instituto de Física, Universidad Nacional Autónoma de México.
  • G. Roati Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche and European Laboratory for Nonlinear Spectroscopy (INO-CNR & LENS), 50019 Sesto Fiorentino, Italy.

DOI:

https://doi.org/10.31349/RevMexFis.66.388

Keywords:

Quantum degenerate gases, fermionic superfluidity, Bose-Einstein condensation, laser cooling and trapping

Abstract

We present our experimental setup to produce ultracold strongly correlated fermionic superfluids made of a two-component spin-mixture of 6Li atoms. Employing standard cooling techniques, we achieve quantum degeneracy in a single-beam optical dipole trap. Our setup is capable of generating spin-balanced samples at temperatures as low as T/TF = 0.1 containing up to 5 × 10^4 atomic pairs. We can access different superfluid regimes by tuning the interparticle interactions close to a broad magnetic Feshbach resonance. In particular, we are able to explore the crossover from the molecular Bose-Einstein condensate (BEC) to the Bardeen-Cooper-Schrieffer (BCS) superfluid regimes. In the near future, we plan to study different collective excitations in these superfluid samples.

Author Biography

D. Hernandez-Rajkov, Instituto de Física, Universidad Nacional Autónoma de México

Investigador Asociado C

Departamento de Física Cuántica y Fotónica

Instituto de Física, UNAM

References

C. Pethick and H. Smith, Bose-Einstein condensation in dilute gases, (Cambridge University Press, 2002).

I. Bloch, J. Dalibard and J. Zwerger, Rev. Mod. Phys. 80 (2008) 885.

C. Chin, Rev. Mod. Phys. 82 (2010) 1225.

S. Giorgini, L. P. Pitaevskii and S. Stringari, Rev. Mod. Phys. 80 (2008) 1215.

S. Jochim et al., Science 302 (2003) 2101.

M.W. Zwierlein et al., Phys. Rev. Lett. 91 (2003) 250401.

M.Greiner, C. A. Regal and D.S. Jin, Nature 426 (2003) 537.

T. Bourdel et al., Phys. Rev. Lett. 93 (2004) 050401.

C. Chin et al., Science 305 (2004) 1128.

W. Zwerger, Ed., The BCS-BEC Crossover and the Unitary Fermi Gas. (Lecture Notes in Physics, vol. 836, Springer, 2012).

Q.Chen, J. Stajic, S. Tan and K. Levin, Phys. Rep. 412 (2005) 1.

A. Adams et al., New J. Phys. 14 (2012) 115009.

L. Salasnich, J. Phys.: Conf. Ser. 497 (2014) 012026.

P. van Wyk et al., Phys. Rev. A 97 (2018) 013601.

H. J. Metcalf and P. van der Straten, Laser Cooling and Trap- ping, (Springer, 1999).

R. Grimm, M. Weidemu ̈ller and Y.B. Ovchinnikov, Adv. At. Mol. Opt. Phys. 42 (2000) 95.

A. N. Nesmeyanov, Vapour pressure of the elements, trans- lated and edited by J. I. Carasso ( New York, Academic Press 1963).

D.Das and V. Natarajan, Phys. Rev. A 75 (2007) 052508.

V. S. Letokhov. Saturation spectroscopy. In: Shimoda K. (eds) High-Resolution Laser Spectroscopy. Topics in Applied Physics, vol 13. Springer, Berlin, Heidelberg (1976).

W. Ketterle et al. Making, probing and understanding Bose- Einstein condensates. Proceedings of the International School of Physics “Enrico Fermi” Course CXL, (IOS Press 1999) pp. 67-359.

W. Ketterle and M.W. Zwierlein. Making, probing and under- standing ultracold Fermi gases. Proceedings of the Interna- tional School of Physics “Enrico Fermi”, Course CLXIV, (IOS Press 2008) pp. 95-287.

T. Bergeman, G. Erez and H.J. Metcalf, Phys. Rev. A 35 (1987) 1535.

D.Rio Fernandes et al., Europhys. Lett. 100 (2012) 63001.

A.T. Grier et al., Phys. Rev. A 87 (2013) 063411.

A. Burchianti et al., Phys. Rev. A 90 (2014) 043408.

J. Dalibard and C. Cohen-Tannoudjii, J. Opt. Soc. Am. B 6 (1989) 2023.

A. Aspect et al., Phys. Rev. Lett. 61 (1988) 826.

G. Grynberg and J.-Y. Courtois, Europhys. Lett., 27 (1994) 41.

W. Ketterle and N.J. Van Druten, Adv. Atom. Mol. Opt. Phys. 37 (1996) 181.

S. Giorgini, L.P. Pitaevskii, and S.Stringari, Phys. Rev. A 54, R4633(R) (1996).

C. A. Regal, M. Greiner, S. Giorgini, M. Holland and D. S. Jin, Phys. Rev. Lett. 95 (2005) 250404.

A. Perali, P. Pieri, L. Pisani and G. C. Strinati, Phys. Rev. Lett. 92 (2004) 220404.

Yan He, Chih-Chun Chien, Qijin Chen and K. Levin. Phys. Rev. B 76 (2007) 224516.

M.J.H. Ku, A.T. Sommer, L.W. Cheuk, and Martin W. Zwierlein, Science 335 (2012) 563.

C.A.R. Sa de Melo, M. Randeria and J.R. Engelbrecht, Phys. Rev. Lett. 71 (1993) 3202.

C.A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92 (2004) 040403.

M.W. Zwierlein, C.A. Stan, C.H. Schunck, S.M.F. Raupach, A.J. Kerman, and W. Ketterle, Phys. Rev. Lett. 92 (2004) 120403.

Tsubota M. and Kasamatsu K, Quantized Vortices and Quantum Turbulence. In: Bramati A., Modugno M. (eds) Physics of Quantum Fluids. Springer Series in Solid-State Sciences, vol 177. (Springer, Berlin, Heidelberg, 2013).

M. Tsatsos et al., Phys. Rep. 622 (2016) 1.

Downloads

Published

2020-07-01

How to Cite

[1]
D. Hernandez-Rajkov, “Experimental setup for the production of ultracold strongly correlated fermionic superfluids of 6Li”, Rev. Mex. Fís., vol. 66, no. 4 Jul-Aug, pp. 388–403, Jul. 2020.

Issue

Section

04 Atomic and Molecular Physics